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Abstract
The model risk of two systemic risk measures (SRMs) was quantified for a set of systemically important 
European banks, using the dispersion of SRM estimates as a proxy. A high model risk was observed, 
with dispersions of above 65% of the average value, associated with the parametrization error of 
the Monte Carlo algorithm alone, which has profound implications in the context of systemic risk. 
Ranking individual banks based on the SRM values was observed to become less dependable due 
to the high model risk of the SRMs, thus making it difficult for regulators to implement proper 
policies. Underestimation of the systemic risk of a bank increases the stress within the network, while 
overestimation of the systemic risk of a bank might lead to undue penalties levied upon the bank.  
The model risk metric we used additionally allowed us to rank the parameter contributions to  
the observed model risk. 
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1. Introduction

Systemic risk (SR) is a general concept that is better understood intuitively than formally. Indeed, 
there is no consensus about its definition. According to Mishkin (1995), SR is defined as the likelihood 
of a disruptive event that disables financial institutions (FIs) from funding productive investment 
opportunities. Kaufman (1995) defines SR as the risk of a chain reaction of falling interconnected 
dominoes. Schwarcz (2008) uses a working definition that combines the risk of an economic shock,  
the propagation of this shock through the network, and the eventual market-wide increases in cost  
of capital (or decrease in availability of capital), the last evidenced by financial market-price volatility. 
Despite the lack of consensus, three components are associated with SR (Kaufman, Scott 2003;  
Hurd 2016):

1. A shock or a trigger. This refers to events endogenous or exogenous to the financial system, such 
as an unexpected bankruptcy of a systemically important FI, or a natural catastrophe.

2. Propagation of the shock throughout the financial system. This refers to the spread of the shock/
trigger through the entire system, often described as domino, cascade or contagion effects. Two types 
of channels can exist (Roncoroni et al. 2019) – direct (through inter-FI dependencies such as loans) and 
indirect (such as exposures to common asset classes). These might amplify shocks through feedback 
effects present in the network.

3. Potential impact on the wider economy. This refers to the impact felt by the non-financial system 
part of the global economy in response to the crash of the financial system. There has been an increase 
in the financialization of the economy (Jajuga 2014), leading to the possibility of more adverse effects 
to the economy due to a financial crash. These materialize in different forms, such as falls in money 
supply and stock indices, or significant decreases in economic production and employment (Hurd 2016).

Quantifying SR is not an easy task since each part can contribute in various ‘amounts’ depending 
on the financial crisis under study. A result of this is the wide range of computational approaches in 
literature that aim to measure SR, which we classify in two broad families: network or graph models that 
build financial networks using propagation channels relying on real or simulated inter-FI information 
(such as inter-FI loans and exposures to asset classes), and market data based models that infer inter-FI 
information through correlation measures. This classification is certainly not a strict classification,  
e.g. one can devise network models that use market data in some parts of the modelling process.

This work uses systemic risk measures (SRMs) that use readily available market data, specifically 
equity prices and outstanding shares (used to build a market index). Two SRMs are studied in this 
work: Marginal Expected Shortfall (MES), and Delta Conditional Value at Risk (ΔCoVaR). The MES 
of an FI studies the impact of a market crash on the FI and is defined as the average price return 
of the FI when the market falls (Acharya et al. 2010; Brownlees, Engle 2012; Idier, Lamé, Mésonnier 
2013). The ΔCoVaR of an FI, on the other hand, looks at how the risk of the market (using the Value 
at Risk or VaR measure) changes when the FI falls (Adrian, Brunnermeier 2008). Since they both look  
at the interplay of the market and FIs, they aim to capture the ‘too connected to fail’ (TCTF) concept. 
These SRMs are convenient to use, since they rely on market price data, which is often freely available 
to the wider public, and available at multiple frequencies (such as intra-day, daily, etc.). Higher 
frequency data can be useful for studying SR, since contagion events can be extremely fast.

Despite the advantages of market-data based SRMs, they have certain limitations. Firstly, they 
assume that markets are efficient, and so shocks are simulated in the form of FI or market price falls, 



How reliable are systemic risk measures?... 465

with little to no regard to the actual cause of the crash (Benoit et al. 2017). Secondly, they infer inter-
-FI connections through price returns correlations. Given a correlation value, it is difficult to claim, 
without additional tests, whether the observed value is due to a true inter-FI dependency (where one 
FI’s balance sheet depends on the performance of the other), or an exposure to certain common assets 
(where the portfolios of both FIs contain similar assets). Finally, Danielsson et al. (2016a) have reported 
that some of these SRMs have large model risk, making even the significance ranking of FIs unreliable.

Model risk can be thought of as the risk that practitioners are exposed to when using a particular 
model. Since models are, at best, approximations of observed phenomena, all models have an associated 
risk when they are used. In the context of SR, this translates to uncertainty about the SRM outcomes. 
Measurement of SR is of vital importance for regulators and policymakers, who require tools that can 
properly (and in a timely manner) detect the buildup of stress within the financial system and quantify 
the contributions of systemically important institutions to the observed stress. The presence of model 
risk implies that it is harder for regulators to accurately judge the true contribution of a bank to the 
overall stress. This problem is further compounded when multiple SRMs are combined to capture  
a wider picture. Indeed, there have been reports in literature that rankings of banks across SRMs 
can vary quite a lot since they capture different effects (Danielsson et al. 2016b). While some studies 
have highlighted the variability in SRMs and their implications for regulatory assessments, there is 
little research focused on quantifying the inherent model risk within a given SRM and understanding 
its impact on the rankings of systemically important institutions. The study aims to fill this gap by 
quantifying the model risk of the chosen SRMs and analysing how this propagates to the rankings 
of the bank. We believe that this can help in the improvement of SRMs and provide useful tools for 
regulatory frameworks to deal with the inherent uncertainty of SRMs.

Broadly speaking, model risk signifies the uncertainty in model outcomes due to human error 
in model application (e.g. parametrization, inapplicability) or model shortcomings (e.g. instability, 
sensitivity). Model risk is thus a consequence of general model construction and uncertainty in finance 
(Derman 1996; Crouhy, Galai, Mark 1998). Since everything related to a model can be part of the model 
risk, including data contamination, wrong implementations, badly approximated solutions, software, or 
hardware bugs, and even the practitioners themselves, it is then not possible to truly mitigate all these 
risks, especially in the complex domain of finance. As a result, for pragmatic purposes, practitioners 
look at model risk with more focused points of view. For example, some research works define model 
risk as inaccuracy arising from estimation errors and uses of incorrect models (Hendricks 1996; Boucher 
et al. 2014; Glasserman, Xu 2014). Authors might equivalently consider model risk induced by the data-
-fitting approach used for statistical modelling, namely, the choice of tests for the data and estimation 
of the model parameters (Sibbertsen, Stahl, Luedtke 2008). Based on various literature sources, and 
personal experience, we classify model risk sources as:
	▪ Dataset issues

�Poor quality data makes it difficult to extract useful information, whereas incorrect description 
of datasets might lead to the eventual inappropriate use of the data. Data collection might 
additionally be subject to biases, such as survivorship bias, where the dataset reflects just the 
entities that ‘survived’ until the time of the data collection.

	▪ Data processing issues
�The transformation of data variables, including something as simple as flagging erroneous points 
or filling missing data, are processes that might potentially increase model risk. These steps are 
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sometimes automated, which, if not managed appropriately, can increase model risk due to human 
error or the introduction of computer bugs.

	▪ Model construction related issues
�During the abstract development phase (as opposed to the computational implementation phase), 
certain assumptions and decisions about the model and data usage are made, which can increase 
model risk if the context changes. Uncertainty in the model parameters, referred to as estimation 
risk in literature (Klein, Bawa 1976; Lewellen, Shanken 2000), can also contribute to model risk. 
Estimation risk can be quantified in different ways, such as by building different model variants 
(Danielsson et al. 2016b; Pasieczna 2021), or by bootstrapping data (Christoffersen, Gonçalves 2004).

	▪ Implementation related issues
�In computational implementations, model risk typically manifests as computer bugs, which are 
introduced due to multiple factors: human error, faulty assumptions about the data and algorithm, 
or software and hardware limitations. Model risk also tends to increase with computational 
complexity, negatively impacting models even in something as simple as spreadsheets.  
For example, JP Morgan lost over 6 billion dollars due to a small bug in their Excel implementation 
in 2012 (EuSpRIG 2013; Pollack 2013).

	▪ Model interpretation related issues
�Practitioners use models to help them understand a particular problem, but the models do not 
capture the entire picture. Relying solely on the models’ results can lead to an increase in model 
risk. Misinterpretation of results can happen due to practitioners using models as ‘answer machines’ 
(Wagner, Fisher, Pascual 2010). This is particularly important for regulators and policymakers,  
as decisions are made based on these results that sometimes affect entire economies.

We distinguish between accuracy, defined as the ‘correctness’ of the SRM values with respect 
to a pre-chosen benchmark or property, and model risk, defined as the variation in SRM estimates. 
Additionally, we focus on the model parametrization error, sometimes referred to as estimation risk 
(Klein, Bawa 1976; Jorion 1996; Christoffersen, Gonçalves 2004). We quantify this risk by building 
SRM estimates under different parameter values and measuring the variation of these estimates.  
The remainder of the paper is organized as follows. In the following section, we describe: (i) the dataset 
used, (ii) the construction of the market index, (iii) the SRMs analysed, (iv) the model variants for 
generating the SRM estimates along with the Monte Carlo (MC) algorithm used, and (v) the model risk 
metric used. Section 3 contains the model risk results and the ranking of parameter contributions to 
the model risk. We end the work with concluding remarks.

2. Data and methodology

2.1. Data

The FIs chosen in this study are a subset of a list of FIs directly supervised by the European Central 
Bank (ECB). The ECB considers them to be systemically important and regularly updates this list.1  

1 � European Central Bank, List of supervised banks, https://www.bankingsupervision.europa.eu/banking/list/html/index.
en.html, retrieved 22 August 2021.
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These FIs correspond to countries with the euro as their official currency, or countries whose currencies 
are pegged to the euro. The criteria for their choice are described on the ECB’s Banking Supervision 
website.

The data collection was done in August 2021, at which time the ECB supervised 114 FIs, of which 
47 were kept for study. The remaining FIs were rejected for one of the following reasons: unavailability 
of data in Bloomberg, unlisted (or pending listing) on the market exchanges, a private company, or 
having been acquired by an included FI. The list is provided in Table 1. The data consisted of daily close 
prices and daily outstanding shares of the chosen FIs and was obtained using the Bloomberg terminal. 
The daily outstanding shares data was necessary to compute the market capitalization of the FIs for 
building a reference market index (see Section 2.2). Whenever possible, the time series for each FI began 
on the first of January 2000.

2.2. Index building

The SRMs considered in this study require a reference market index. Typically, an appropriate existing 
index, such as Euro Stoxx, or Euro Stoxx Banks, is used, which represents the actual European ‘market’. 
However, since we are not evaluating the SRMs themselves, but the model risk associated with their 
estimation, we opted to construct a simple market-capitalization weighted index using only the 
considered FIs, since an external market index may have exogenous (exogenous to the list of FIs) effects 
that affect the model risk estimation. Conceptually, the self-built index represents the amount of wealth 
generated by these FIs, and the index movements are solely due to the movements of the considered 
FIs. Mathematically,
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where indexd, divisord, mcapi(d), and compd are the values of the market index, the divisor, the market 
capitalization of FI i, and the market composition respectively, on the day d; the market capitalization 
of the FI is the product of its market price and outstanding shares.

 
Since the index represents the total wealth of the system, market prices and outstanding shares 

were forward filled, i.e. missing data were filled with the last known values. The divisor was updated 
whenever a new FI entered the market as described in eq. (2), and was used from the following 
simulation day to ensure causal use of data. The starting value of the divisor was chosen as described 
in eq. (3), so that the index began with a value of 100 points.
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The final market index is shown in the top sub-plot of Figure 1. We expect this index to have 
survivorship bias. For example, an FI that was supervised before 2014, but not supervised after, will not 
be present in the dataset, since the supervised list used was that for August 2021. The prices of this FI 
would not have been downloaded, thus it was missing in our simulations. However, we argue that if the 
information about the FI prices was significant at that time, it would already have been incorporated 
into the price movements of the other existing FIs through the inter-FI correlations – assuming that  
the price movements reflect all available information.

To verify the quality of the self-built index, we compared it with a free-float market-capitalization 
weighted European-banks index, the Euro Stoxx Banks (SX7E) index,2 shown in the bottom sub-plot  
of Figure 1. The SX7E data was downloaded from investing.com and began on 28 December 2012.  
Only the overlapping period is shown in the sub-plot. We see that the self-constructed market index  
has a visual behaviour remarkably similar to the SX7E index, with the survivorship bias manifesting  
as mild optimism (our index slightly outperforms the SX7E). Since the correlations between the log- 
-returns of the self-built and SX7E indices are 97.76%, and since we have limited data for the SX7E index, 
we use the self-built market index in this work.

2.3. Systemic risk measures

We analysed the model risk of two widely used SRMs:

A. Marginal Expected Shortfall (MES)
MES is defined as the average return of the FI when the market returns are in their left tail 

(Acharya et al. 2010; Brownlees, Engle 2012; Idier, Lamé, Mésonnier 2013):
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where:
Ri, t and Rm, t represent the price returns of the FI i and the market m respectively at time t,
E(x) is the expectation value of x,
�VaRm, t(α) is the VaR of the market at confidence level α, and is defined as the maximum possible 
loss, whose probability is within a pre-defined confidence level over a predefined time horizon 
(Hendricks 1996; Holton 2014; Pasieczna 2019). 

In our MC setup, the MES of a bank is computed as the average simulated returns of the bank over 
the selected MC iterations, where the market’s simulated returns are below the simulated market VaR.

B. Delta Conditional Value at Risk (ΔCoVaR)
The ΔCoVaR studies the FI’s contribution to overall SR (Adrian, Brunnermeier 2008; Castro, Ferrari 

2014), and is defined as:
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2 � EURO STOXX Banks, https://stoxx.com/index/sx7e/, retrieved 27 August 2022.
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is defined as the VaR of the market m at confidence level α, when the 
returns of the FI i are at their VaR (confidence level β). β = 0.5 implies median returns at the FI (‘normal’ 
functioning). Thus, ΔCoVaR quantifies the change in market risk (market VaR) as the FI crashes.  
We use a slightly different approach to a quantile regression (Bianchi, Sorrentino 2020) to estimate 
it, where we compute the market VaR over a certain range (1% = ±0.5% of the total MC iterations)  
of simulated market returns around the required quantile (i.e., β ±  0.005) of the FI’s simulated returns.

The MES studies the reaction of the FI to market falls, whereas the ΔCoVaR quantifies the reaction 
of the market to FI falls. We expect them to behave differently, except in two extreme cases. First,  
if one FI is so big that it alone dominates the market index, then both SRMs will get correlated to each 
other. Second, if all FIs in the market index have extremely large exposures to a common factor (strong 
correlations between FIs), then the market index picks up the common exposure, and both SRMs will 
get correlated to each other. In our case, the market index consists of FIs whose relative sizes are less 
extreme with a maximum of 11% (left image in Figure 2), and the inter-FI correlations, while positive 
with an average of 39%, are not very high (right image). So, we expect these SRMs to act relatively 
independently of each other.

2.4. Model variants and Monte Carlo algorithm

In this work, we quantify the model risk of SRMs due to the parametrization error of the MC distribution 
used to simulate the uncertainty in price returns (defined as daily natural log price changes).  
The MC distribution is used to simulate different potential future trajectories of individual FIs and the market 
index and is estimated from historical data with multiple parameters. By altering these parameters,  
we simulate the uncertainty in the MC distribution directly. This proposed method requires 
significantly fewer trials to get a model risk estimate compared to a data bootstrapping approach. Four 
parameters were altered in this work:

A. Inter-FI correlations:
a) �independent: each FI’s price returns are treated independently, i.e. the correlation matrix is 

fully diagonal; the interaction between them is incorporated through a correlation between 
the returns of one FI and the market index and simulated with a bivariate process (Brownlees, 
Engle 2012);

b) �multivariate: the full correlation matrix is used to obtain simulated price returns for each FI, 
and the market index is built from the corresponding simulated prices.

B. Distribution type:
a) �normal: a symmetric bell-shaped distribution, characterized by two parameters: the inter-FI 

covariance matrix Σ and the mean μ in the multivariate case, and the standard deviation σ 
and the mean μ in the independent case;

b) �Student’s-t: a symmetric bell-shaped distribution like the normal distribution but allows  
for heavier tails through an additional degree of freedom parameter ν, which is estimated  
for each FI (and the market in the independent case).

C. Window type:
a) �rolling: simple moving statistical estimates over a certain window length with equal weights 

to all days;
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b) �exponentially weighted moving (EWM): moving statistical estimates which give more 
importance to recent history; here, the centre of mass (com) parameter was used to define

the EWM timescale, which decreases the weight by a factor of
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 per day; the weight of 

�a data point at is about 37% of the weight of a data point on the first day, and we expect  
the weights to be negligible by 5 xcom.

D. Historical period (‘days’ refers to trading days):
a) 125 days: approximately 6 months of data;
b) 250 days: approximately 1 year of data;
c) 500 days: approximately 2 years of data.

Within the MC field, there are two main viewpoints on whether to consider the distribution choice 
(normal/Student’s-t, independent/multivariate) in the data generating process (DGP) as parameters to 
the model or not. In classical statistical modelling, the choice is typically viewed as part of the model 
specification, with parameters estimated within that chosen distribution family (Robert, Casella 2013; 
Gelman et al. 1995). In contrast, in Bayesian approaches, by placing priors over different distribution 
families (or the entire space of distributions), the distribution choice itself acts as a parameter (Hoeting 
et al. 1999). For example, Green introduced the Reversible Jump Markov Chain Monte Carlo techniques, 
in which a model indicator was included so that one could sample not just the distribution parameters, 
but the distribution family itself, such as jumping from a normal distribution with two parameters to 
a Student’s-t with three parameters (Green 1995). The first perspective thus fixes the distribution family 
and focuses on estimating parameters within it, whereas the latter incorporates uncertainty about  
the distribution itself in the modelling process.

Within the context of SRMs, researchers tend to compare the estimates from different distributions 
(Danielsson et al. 2016b; Löffler, Raupach 2018), which is why we align ourselves to the second 
viewpoint, which considers the distribution choice as a parameter. To obtain a complete picture, it is 
instructive to estimate model risk from both viewpoints. Therefore, the next section presents the model 
risk results for each perspective.

In addition to the altered parameters, various choices were further made for purposes such as ease 
of computation, numerical stability, or ‘realistic’ results. We highlight some of them, since they stabilize 
the SRM estimates, and lower the model risk.

The degrees of freedom parameter ν was estimated with the rolling approach only, as the scipy 
implementation (Virtanen et al. 2020) used here does not support weights for individual observations 
while fitting non-normal distribution parameters. This causes ν to be static across the window type 
parameter, leading to a smaller variation in the SRM estimates and a consequent drop in model risk 
estimates. Furthermore, the values of ν were lower bound to 5. ν < 5 implies an extremely heavy-tailed 
distribution, and as the Student’s-t distribution is symmetric, we observed unrealistically large positive 
price returns. As the distributions are not allowed to be arbitrarily heavy tailed, we expect a drop  
in model risk estimates.

In terms of data processing, missing prices were dropped while computing price returns to minimize 
the number of zero-price changes. Multiple zero-price changes reduce the standard deviation and  
ν parameter, leading to the distribution appearing less risky but more heavy-tailed. However, dropping 
data points leads to less reliable statistical estimates. As a compromise, the FI’s mean, standard deviation 
and ν were estimated when there was data of at least 80% of the historical period parameter, and  
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the inter-FI correlation was estimated when there was data of at least 60% (a maximum of 20% data 
missing for each FI). As the SRM estimates become more stable, we expect lower model risk estimates.

We now describe the MC algorithm used to generate the SRM estimates for the different model 
variants. For each day d of the simulation period, the MES and ΔCoVaR at confidence level α for day 
d +1 were calculated as follows (quantities with a hat x̂   imply simulated quantities):

1. Estimate the empirical mean μ i/m, d , standard deviation σ i/m, d and the degrees of freedom 
parameter ν i/m, d for each FI i and the market m, using the estimation window type and historical 
period parameters. Given the inter-FI dependencies parameter, either compute the correlations ρim, d  
of each FI with the market (independent) or the full inter-FI correlation matrix Σ d (multivariate).

2. With the estimated statistical quantities, generate N = 20000 random returns (index n indicates 
the MC iteration) for each FI and the market for day d+1, using one of the following approaches  
(inter-FI dependencies parameter):

a) independent: generate bivariate random numbers (Brownlees, Engle 2012):
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represent the random numbers (nth MC iteration) generated using a standard normal/
Student’s-t distribution corresponding to the market and the FI; the market and FI returns
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were simulated using the
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; simulated prices for the FIs and the market were obtained as 
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;
b) multivariate: as the empirical inter-FI correlation matrix is used, the returns 
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were 
generated for all FIs simultaneously with the multivariate Gaussian or Student’s-t distributions; 

these simulated FI returns were converted to simulated prices as 
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, and then 
aggregated to a simulated market index
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; the simulated market returns were computed as 
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 .

3. Using the simulated returns, the MES and ΔCoVaR were estimated for the risk condition α, 
defined as 95% or 99% in this work, as:

a) MES: estimate the VaR of the market as the αth quantile from the N simulated market returns 
and average the simulated returns of the FIs over iterations when the simulated market returns were 
below this VaR;

b) ΔCoVaR: first compute the stressed VaR as the VaR of the simulated market returns at confidence 
level α over MC iterations where the simulated FI returns were between their 
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  . Then 
compute the unstressed CoVaR as the VaR of the simulated market returns at confidence level α   
where the simulated FI returns were between their 
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quantiles. The difference 
between the stressed and unstressed CoVaRs is the ΔCoVaR. ε was set to 0.005, allowing us to have 1% 
of simulated returns (200 iterations) for the estimation of the stressed and unstressed CoVaRs.

Four parameters are altered in the MC algorithm, and thus, we have 24 estimates of the MES and 
ΔCoVaR per FI per day per risk condition (α ∈ {95%, 99%}). As mentioned earlier in this subsection, 
we also split the estimates per DGP, which gives us six estimates of the MES and ΔCoVaR per DGP  
per FI per day per risk condition.
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2.5. Model risk

Here, model risk implies the dispersion of SRM estimates, measured by the ‘spread,’ defined as the difference 
between the maximum and minimum values normalized by the average value:
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This metric additionally allows one to rank parameter contributions to the total model risk. This 
can be done by first computing the average of the model risk values obtained by fixing an individual 
parameter to its values, and then by measuring the drop with respect to the total model risk. A higher 
drop implies a larger contribution of a parameter, since the ‘unexplained’ part of the model risk is due 
to the variation of this parameter. This type of analysis is referred to as sensitivity analysis and is used 
to devise modelling schemes robust to parameter choices. For comparison of parameter contributions, 
an important property of a model risk metric is that the model risk of a subsample is less than or equal 
to the total model risk. The spread metric satisfies this property if the denominator in eq. (8) contains 
the average of the full sample.

Other than the spread, one can use the ratio of the maximum to minimum values as a model  
risk metric (Danielsson et al. 2016b; Pasieczna 2021; Pasieczna, Szydłowska 2021), which is equivalent  
to the spread, up to a shifting and scaling transformation:
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The ratio satisfies the property that the ratio of the subsample is smaller than or equal to the ratio 
of the full sample. The main advantage of the spread is that it is slightly better behaved if the smallest 
estimates are close to zero, in which cases the ratio values get arbitrarily large.

A natural extension of the spread is the standard deviation over the average, which is more robust 
to outliers (single extreme maximum or minimum values). However, we would need more SRM 
estimates, which is not the case here, where we work with 24 estimates. In addition, the property  
of the subsample having a standard deviation not greater than the full sample does not always hold, 
and so ranking parameter contributions is not easy.

As the spread is more robust than the ratio to smaller values, can work with fewer estimates, and 
has the property that subsamples cannot have model risk larger than that of the full sample, we use 
the spread here.

While the spread metric allows one to quantify the differences between the estimates for a single 
FI, regulators tend to look at the relative contributions of the banks based on their SRM estimates 
before clustering them into risk buckets. Indeed, the Financial Stability Board assigns systemically 
important banks into six risk buckets (bucket-0 to bucket-5 as of December 2024), with FIs in bucket-0 
having no requirement of an extra capital buffer, and FIs in bucket-5 (currently empty) having an extra 
capital buffer requirement of 3.5%.3  As a proxy of a regulatory framework, we performed a ranking of the 
MES and ΔCoVaR estimates across all FIs for each MC parameter combination per day. We then bucketed 

3 � Financial Stability Board, List of Global Systemically Important Banks (G-SIBs), https://www.fsb.org/2024/11/2024-list-of-
global-systemically-important-banks-g-sibs/, retrieved December 2024.
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 the banks into six equally sized buckets B0–B5, with B0 containing the lowest-risk FIs, and B5 containing 
the highest-risk FIs. Thus, for each FI, per day per SRM, we have 24 estimates of its risk bucket.

To quantify the model risk of the bucketing, we used two metrics: percentage agreement, and 
the Krippendorff’s alpha (Krippendorff 2019; Castro 2017). These allows us to treat the parameter 
combinations as raters and then quantify the level of agreement between the assignments of the banks 
to their risk buckets. The difference between the two metrics is that Krippendorff’s alpha corrects 
for chance agreement, i.e. raters might agree ‘accidentally’, whereas the percentage agreement does 
not. Additionally, the percentage agreement only looks at whether the assignments match and does not 
have a notion of the distance between the buckets. This implies that the metric penalizes B0/B1  
in the same way as B0/B5. The Krippendorff’s alpha, on the other hand, supports ordinal-rated data, 
like in our case. Both metrics are estimated daily for both SRMs.

3. Results and discussion

The average spread results for the MES and ΔCoVaR at both confidence levels are provided in 
Table 2. Model risk estimates with fixed individual parameters are also provided so that parameter 
contributions can be ranked. The spread values for the MES (ΔCoVaR) at 95% and 99% confidence levels 
were 0.677 (0.854) and 1.137 (1.850) respectively, indicating that the distance between the maximum 
and minimum was nearly 68% (85%) of the average in the low-risk condition and over 110% (180%)  
of the average in the high-risk condition. These values signify high model risk for both SRMs, since 
with a spread value as large as the average, the individual estimates lie anywhere from half the average  
to 1.5 times the average!

High model risk values raise questions on the model validity, particularly when single estimates are 
generated. Consider the example when the ΔCoVaR at 95% for a given FI is 0.10% in percentage price 
change units. Assuming this is an average estimate, with a symmetric spread value of 85% (±42.5%), 
the ‘real’ ΔCoVaR can be anywhere between 0.05% (0.1 × 0.575) and 0.1425% (0.1 × 1.425), a factor of 
about 3 between the extremums. Using these results to identify systemically important FIs amplifies 
the model risk due to the uncertainty across FIs. While one might want to consider the distribution  
of SRM estimates to generate a band based on confidence intervals that reflects the majority 
distribution of the estimates, the high model risk might still make the results unreliable.

To determine the contribution of the parameters to the overall model risk, we compute the drop in 
model risk by fixing parameter values, denoted by the column ΔP

x% in the table, along with the average 
drop over all parameter values for a given parameter, denoted by the column ΔP

x%. A larger value  
of the average drop for a particular parameter implies a higher contribution, since changing this 
parameter was the factor in the drop of the total observed model risk.

When the inter-FI dependencies parameter is fixed, the spread values for the MES (ΔCoVaR) at 
95% and 99% confidence levels changed on average by -0.096 (-0.154) and -0.255 (-0.519) respectively. 
The multivariate approach has slightly lower model risk than the univariate (independent) approach, 
indicating that a mean-field type approach contributes a bit more to model variability.

Changing the distribution type parameter changes the spread values for the MES (ΔCoVaR)  
at 95% and 99% confidence levels on average by -0.189 (-0.267) and -0.373 (-0.678) respectively. Fixing 
the parameter to the normal distribution leads to a stronger reduction than fixing the parameter  
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to the Student’s-t distribution, indicating an increased sensitivity of both SRMs to the modelling  
of the tail behaviour.

The window type parameter appears to contribute less to the model risk than the distribution 
type parameter for both SRMs. The spread changed for the MES (ΔCoVaR) at 95% and 99% confidence 
levels on average by -0.136 (-0.139) and -0.190 (-0.240) respectively. The difference in the reduction is not 
identical across the parameter values, indicating a small sensitivity to the shape of the window function 
used for estimating statistics of historical data.

The largest contribution to the total model risk appears to be from the historical period parameter. 
On average, the spread for the MES (ΔCoVaR) at 95% and 99% confidence levels is reduced by -0.289 
(-0.294) and -0.432 (-0.566) respectively. Estimates with a given historical period are more similar to each 
other than those with a different value of the parameter, and when the parameter values are altered, 
the model risk increases. This parameter is linked to the memory of past events and reactivity to new 
data, with smaller time scales being quicker in forgetting past data and reacting to new data. When 
estimates with different time scales are compared, the model risk is perceived to be increased.

We plot the temporal evolution of the spread for the MES at 95% and 99% confidence levels for 
all FIs in Figure 3, along with the average and median. The black dashed line at zero represents the 
‘ideal’ (desired) situation of no model risk. An immediate observation can be made that the spread 
never reaches the ideal values for any day for any FI. We also notice the model risk for the MES at 99% 
confidence level tends to be higher than that for the 95% confidence level, which can be attributed to 
the fact that estimates under the high-risk condition vary a bit more due to the dependence on the tails. 
The model risk is observed to increase typically just after high volatile periods (e.g. 2008–2009, 2020). 
Estimates can have large variations when markets get volatile because of the different reaction times, 
memory, or tailedness. As volatile periods end, the model risk increases due to this variation.

The temporal evolution of the spread for the ΔCoVaR at 95% and 99% confidence levels for all FIs 
is provided in Figure 4, along with the average and median. Like with the MES, the three observations 
hold: (i) the spread never reaches the ideal values for any day for any FI, (ii) the model risk for  
the ΔCoVaR at 99% confidence level tends to be higher than that for the 95% confidence level, and  
(iii) increases in model risk typically just after volatile periods (e.g. 2008–2009, 2020).

Thus, the model risk behaviour is similar for both SRMs, with the ΔCoVaR having a higher  
model risk than the MES, hinting at the increase of model risk with model complexity. The fact that model 
risk is always present has profound implications for practitioners, who must adapt to deal with it. 
Furthermore, the individual FI results for both SRMs indicate that there can be very extreme values 
of the spread compared to the average curve. As an example, in the period 2018, the individual spread 
values for the MES at 99% confidence level can reach nearly 3 (average of 1.5). Since the spread is left 
bounded (minimum value is zero), we can infer that the model risk is right skewed with fat right tails. 
The skewness values for the spread per day (skewness measured across the FIs) for the MES (ΔCoVaR) 
at 95% and 99% confidence levels were 0.8367 (0.8304) and 0.9057 (0.9094) respectively. The right-skewed 
nature means that the risk associated with model failure is large, and within the context of SR, can be 
very damaging for investors, firms, and the macro-economy.

Table 2 contains the results where the distribution choice is treated as a parameter within 
the algorithm. As mentioned previously (Section 2.4), there is another viewpoint where the data- 
-generating process (DGP) is a model specification, and the distribution parameters (means, variances, 
etc.) are estimated from the sampling parameters (here, the historical period, and the window type). 
Based on this viewpoint, we thus have 4 models corresponding to the four DGPs (normal/Student’s-t, 
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independent/multivariate). Table 3 and Table 4 contain the spread results for MES and ΔCoVaR SRMs 
respectively for the four models at both confidence levels, along with the drops in model risk when  
the sampling parameters were fixed.

	From Table 3, we see that the spread for the MES estimated with the normal model with 
independent FIs at 95% (99%) confidence level has an overall model risk of 0.354 (0.455). When fixing 
the window type parameter, the model risk drops by an average of 0.115 (0.148). By fixing the historical 
period parameter, the spread drops by an average of 0.231 (0.294). The overall spread for the MES 
estimated with the normal multivariate model at 95% (99%) was 0.359 (0.460). The model risk dropped 
on average by 0.118 (0.150) when fixing the window type parameter, and by 0.234 (0.298) when fixing 
the historical period parameter. In the case of the MES computed with the Student’s-t distribution with 
independent FIs at 95% (99%) confidence level, the spread was 0.501 (0.791), which dropped on average 
by 0.146 (0.214) when fixing the window type parameter, and by 0.346 (0.563) when fixing the historical 
period parameter. Finally, the spread for the MES with the Student’s-t multivariate distribution at 
95% (99%) confidence level was 0.422 (0.549), which dropped on average by 0.133 (0.173) when fixing  
the window type parameter, and by 0.281 (0.361) when fixing the historical period parameter. 

By analysing the results in Table 4, we see that the spread for the ΔCoVaR estimated with the 
normal model with independent FIs at 95% (99%) confidence level has an overall model risk of 0.360 
(0.534). When fixing the window type parameter, the model risk drops by an average of 0.117 (0.174). 
By fixing the historical period parameter, the spread drops by an average of 0.221 (0.325). The overall 
spread for the ΔCoVaR estimated with the normal multivariate model at 95% (99%) was 0.372 (0.547). 
The model risk dropped on average by 0.120 (0.177) when fixing the window type parameter, and  
by 0.230 (0.335) when fixing the historical period parameter. In the case of the ΔCoVaR computed  
with the Student’s-t distribution with independent FIs at 95% (99%) confidence level, the spread was 
0.559 (1.155), which dropped on average by 0.159 (0.294) when fixing the window type parameter, and 
by 0.378 (0.824) when fixing the historical period parameter. Finally, the spread for the ΔCoVaR with 
the Student’s-t multivariate distribution at 95% (99%) confidence level was 0.485 (0.725), which dropped 
on average by 0.152 (0.232) when fixing the window type parameter, and by 0.308 (0.451) when fixing 
the historical period parameter.

The general conclusions hold for the model risk even when we consider the distribution choice as 
a model specification. We find that the model risk for the SRMs under the higher-risk conditions (99% 
confidence level) is higher than that for the lower-risk condition (95% confidence level). Additionally, 
the ΔCoVaR tends to have higher model risk than the MES, indicating that model risk increases with 
model complexity. When comparing the four models among themselves, we find that the models built 
on Student’s-t distributions tend to have higher model risk than those built with normal distributions. 
This is also linked to model complexity, as the Student’s-t has an additional parameter (degrees of 
freedom) compared to the normal distribution. Finally, we observed that when using the Student’s-t 
distribution, having a multivariate distribution had a reduced model risk compared to having 
independent FIs connected through the market index. This indicates a potential instability in the 
bivariate process, even though both approaches are equivalent, since the market index does not have 
any exogenous effects. This difference was not observed when using the normal distribution, leading 
us to conclude that the potential instability might be in the modelling of the tails.

The spread metric can also be used to judge the parameter contributions to model risk. Before 
ranking the parameter contributions, it helps to analyse one important property of parameter 
contributions measured with the spread. An important observation in the spread tables (Table 2, 
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Table 3, and Table 4) is that the model risk estimates of the parameters do not sum up to the ‘global’  
model risk. In other words, the total model risk is not the sum of the parameter contributions to the model risk. 
This can best be understood with a visual example shown in Figure 5.

We see that the spread measures for estimates with fixed parameter values are less than or equal 
to the ‘global’ (referred to as ‘all’ in the figure) spread measure. Since each point refers to a parameter 
combination of four parameters, there is an overlap in their distributions, and the spread metric for 
individual parameters cannot sum up to the overall spread. This implies that the parameter contributions 
are not marginal contributions, and it makes sense only to look at parameter contributions among each 
other for comparison, and not as true contributions to the observed variation. This is a limitation of 
the spread metric, and it would be useful to devise model risk metrics that can satisfy this property to 
create a ‘true marginal parameter contribution’. However, within the scope of this work, the spread 
metric is already useful for ranking parameter contributions, summarized in Table 5.

The parameter contributing the most to model risk is usually the historical period parameter (except 
for the ΔCoVaR at 99% confidence level). This parameter is linked to the memory of past events and has 
the most variation linked to how quickly large price jumps are forgotten. The parameter contributing 
the least is the window type parameter (except for the MES at 95% confidence level), indicating that 
the shape of the historical window used to determine statistics is less important. The distribution type 
parameter contributes more to the model risk than the inter-FI dependencies parameter, highlighting 
the higher importance of the modelling of the tail behaviour over the type of correlation matrix. This 
type of analysis can also be done for the four DGP-models, in which case, we have only two parameters 
to rank. From Table 3 and Table 4, we see that the historical period parameter contributes more than 
the window type for both SRMs under both risk conditions (95% and 99% confidence levels).

The approach to rank parameter contributions presented here is general enough that it can be 
extended to any parametric algorithm. This can be a useful tool for practitioners to analyse the 
algorithms themselves and potential impact of various parameter choices on the model results.

In addition to estimating the model risk per bank, we looked at how the assignment of the banks 
to risk buckets might alter with changes to the model parameters. As explained in the previous section 
(Section 2.5), we performed a ranking of each FI for every parameter combination and assigned them 
to risk buckets B0–B5, with B0 consisting of banks having the lowest risk (1/6th smallest absolute values 
of the considered SRM), B5 consisting of banks having the highest risk (1/6th largest absolute values). 

Figure 6 contains an example of 30 May 2018 of the bucketing for two banks (Société Générale, 
and Raiffeisen Bank International) based on their MES (left) and ΔCoVaR (middle) at 95% confidence 
level across all 24 model estimates (right subplot contains explanation of the parameter combinations). 
We observed that Société Générale can be assigned anywhere from B1 to B5 based on the MES, and 
anywhere from B0 to B5 based on the ΔCoVaR. Raiffeisen Bank International gets assigned anywhere 
from B1 to B5 based on its MES, and anywhere from B0 to B4 based on its ΔCoVaR. To verify whether 
this level of disagreement comes because of comparing different distributions, we considered the same 
example in Figure 7, but focus on a single DGP: multivariate Student’s-t. The number of parameter 
combinations is now reduced from 24 to 6, but we still see Société Générale being assigned anywhere 
from B1 to B4 (B2 to B5) based its MES (ΔCoVaR), and Raiffeisen Bank International being assigned 
anywhere from B1 to B5 (B0 to B4) based on its MES (ΔCoVaR). This case highlights that even with 
just six parameter combinations and six risk buckets, we have banks that might be classified as low risk  
(B0/B1) with one parameter setting, and high risk (B4/B5) with another parameter setting. In both 
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cases, we see that there is quite a lot of disagreement among the parameter combinations, indicating 
that the observed model risk for a single FI does propagate across to the ranking and the clustering  
of the banks.

To quantify the bucketing concordance, we computed the daily Krippendorff’s-alpha and the 
percentage agreement across the 24 parameter combinations (no DGP-split analysis was done here). 
The monthly averages (for visibility) of the agreement metrics are plot in Figure 8. The Krippendorff’s-
-alpha (top subplot) and percentage agreement (bottom subplot) indicate that the agreement for the 
MES is better than that for the ΔCoVaR. As with the spread, we observed that both metrics were lower 
for the higher risk setting (99% confidence level) than for the lower risk setting (95% confidence level). 
The summary statistics of the two metrics are provided in Table 6. The Krippendorff’s-alpha metric 
in our case has a notion of distances between buckets, i.e. B0/B5 has a ‘larger’ distance than B0/B2,  
which can explain the perceived higher values when compared to the percentage agreement metric, which 
treats all mismatches in the same way.

Our results highlight the limitations of these SRMs, especially important for regulatory purposes. 
High dispersion values of the SRMs indicate a low reliability, making it difficult to truly judge the level 
of stress within the financial network. The risk is not completely removed after ranking or bucketing, 
since banks can be classified as extremely risky, or completely safe by changing a few parameters. 
Regulatory frameworks require banks to keep an extra capital buffer based on the assigned risk 
bucket, and parameterization error alone can misclassify a bank. A high-risk bank misplaced in  
a lower bucket will increase the level of systemic stress within the financial system and in the event 
of a systemic trigger, the bank might not have a sufficient buffer to protect itself and its dependencies 
from the shock. On the other hand, a low-risk bank misplaced in a higher bucket will penalize the 
bank by requiring an unnecessary capital buffer and stop it from taking on potentially interesting but 
risky ventures. While this might not seem as dangerous as the first, banks are required for economic 
stimulus and growth, and inhibiting banks too much might cause the modern economy to slow down, 
creating systemic stresses elsewhere.

4. Conclusions and perspectives

Systemic risk plays a significant role in modern finance and is a useful tool for regulators. The model 
risk of SR is equally vital, since it measures the risk associated with an inaccurate reporting of the 
SR measures. In this work, we addressed the problem of quantifying the model risk of two SRMs, 
MES and ΔCoVaR, by using the spread as a model risk metric, for a set of FIs deemed systemically 
important by the ECB. The model risk source specifically considered was the parametrization error 
of the MC process used to compute SRM estimates. The spread also allows one to rank the parameter 
contributions to the observed model risk by computing drops in model risk of estimates with 
fixed parameter values. Larger average drops over parameter values implied higher contributions.  
This approach is easily extendible to other parametric algorithms and can help analyse sensitivities  
of a model to different parameters.

To estimate the model risk, multiple estimates for each of the SR measures were generated by 
altering the parameters in the MC algorithm. The model risk computed with this scheme is very closely 
related to quantifying the estimation risk and is a complementary approach to a data-driven method 
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that relies on bootstrapping data without modifying the model parameters. Our proposed approach 
builds on the state of the art by being computationally cheaper than the data driven approach, since 
it relies on a smaller number of samples (24 in our case) than sampling data (typically in the hundreds 
or thousands).

Our observations can be summarized as follows. Firstly, the spread estimates were always above 
zero, and right skewed, implying that model risk is always present and can be exceptionally large. 
Secondly, model risk increases with an increase in risk condition, which is intuitive and can be 
interpreted as being due to at least two factors: (i) higher confidence levels focus more on the tails, 
and hence depend more on the modelling of the tail behaviour, and (ii) fewer MC iterations satisfy 
the stricter conditions needed for higher confidence levels, leading to an increased variability of the 
SRM values. Thirdly, model risk typically increases after volatile periods, because the SRM estimates 
react to the drop in volatilities at different speeds. Fourthly, ΔCoVaR has a higher model risk than 
MES, indicating an increase of model risk with computational complexity. We ranked the parameter 
contributions to find that the parameter that contributed most was the historical period, implying 
that the memory (longer windows take more time to forget extreme events) and reactivity (shorter 
windows react faster to latest information) are the main factors to explain the observed model risk. 
The parameter contributing the least was the window type parameter, implying that the actual shape 
(weights to individual data points) of the window mattered less. Finally, we provided a bucketing of 
the banks into six risk buckets and showed that the model risk is not completely removed, and that 
misclassification of the bank becomes quite important.

There are multiple implications associated with our findings. The model risk tends to increase 
when the risk condition is stricter. This is important, notably in the context of banking regulation. 
Systemic events have more real-life consequences than non-systemic events. A larger model risk for SR 
indicates a lower reliability of the measure, thereby making it difficult for regulators to really judge the 
real amount of stress within the financial system. This difficulty is further compounded by an increase 
in model risk with an increase in risk condition. A stricter risk condition tries to evaluate the reaction 
of the FIs and the market to events that are more extreme. The larger model risk implies a reduced 
capability for regulators to judge the actual SR, since the systemically important FIs (SIFIs) as deduced 
from a model may not be the same when the parameters are slightly altered. Misidentification of SIFIs 
is of critical concern to FIs and regulators, as: (i) underestimating the risk can increase the level of stress 
within the system, whereas (ii) overestimating the risk can decrease the investment stimulus from FIs, 
both of which are not ideal for the economy.

These arguments allow us to propose some simple suggestions that use the omnipresent model 
risk. A straight-forward way is to report average stress test results along with the model risk (or to 
report the multiple estimates directly), so that the distribution of the estimates can be analysed  
to identify SIFIs more accurately. A more in-depth analysis of how estimation risk affects the level 
of stress within a financial network can be highly informative. For example, if the MES of an FI is 
reported along with the model risk, then one can compute the MES on pessimistic and optimistic 
scenarios, where the MES is increased and decreased respectively by the model risk amount.  
By collecting the MES estimates on three scenarios (pessimistic, average, optimistic), it might be possible 
to generate a ‘systemic stress distribution’ based on different scenarios at individual FIs. By additionally 
combining these distributions of multiple SRMs (e.g. MES and ΔCoVaR), multiple SR effects can be 
studied, which can be more instructive to maintain the stability of financial systems.
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Appendix

Table 1
List of FIs in the study

Country 
code Name Grounds of significance

BE
AXA Bank Belgium SA;  
AXA Bank Belgium NV

Article 6(5)(b) of Regulation (EU)  
No. 1024/2013

KBC Group NV Size (total assets EUR 150–300 bn)

BG DSK Bank AD Among the three largest credit institutions  
in the Member State

DE

Aareal Bank AG Size (total assets EUR 30–50 bn)

Commerzbank AG Size (total assets EUR 300–500 bn)

Deutsche Bank AG Size (total assets above EUR 1,000 bn)

Deutsche Pfandbriefbank AG Size (total assets EUR 50–75 bn)

EE
AS SEB Pank Total assets above 20% of GDP

Swedbank AS Total assets above 20% of GDP

IE
AIB Group plc Size (total assets EUR 75–100 bn)

Bank of Ireland Group plc Size (total assets EUR 100–150 bn)

GR

Alpha Services and Holdings S.A. Size (total assets EUR 50–75 bn)

Eurobank Ergasias Services and Holdings S.A. Size (total assets EUR 50–75 bn)

National Bank of Greece S.A. Size (total assets EUR 50–75 bn)

Piraeus Financial Holdings S.A. Size (total assets EUR 50–75 bn)

ES

Banco Bilbao Vizcaya Argentaria S.A. Size (total assets EUR 500–1,000 bn)

Banco de Sabadell S.A. Size (total assets EUR 150–300 bn)

Banco Santander S.A. Size (total assets above EUR 1,000 bn)

Bankinter S.A. Size (total assets EUR 75–100 bn)

CaixaBank S.A. Size (total assets EUR 300–500 bn)

Unicaja Banco S.A. Size (total assets EUR 50–75 bn)

FR

BNP Paribas S.A. Size (total assets above EUR 1,000 bn)

Crédit Agricole S.A. Size (total assets above EUR 1,000 bn)

Société Générale S.A. Size (total assets above EUR 1,000 bn)

IT

Banca Carige S.p.A. – Cassa di Risparmio  
di Genova e Imperia

Article 6(5)(b) of Regulation (EU)  
No. 1024/2013

Banca Monte Dei Paschi di Siena S.p.A. Size (total assets EUR 100–150 bn)

Banca Popolare di Sondrio, Società 
Cooperativa per Azioni Size (total assets EUR 30–50 bn)

Banco BPM S.p.A. Size (total assets EUR 150–300 bn)

BPER Banca S.p.A. Size (total assets EUR 75–100 bn)

Intesa Sanpaolo S.p.A. Size (total assets EUR 500–1,000 bn)
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Mediobanca – Banca di Credito Finanziario 
S.p.A. Size (total assets EUR 75–100 bn)

UniCredit S.p.A. Size (total assets EUR 500–1,000 bn)

CY
Bank of Cyprus Holdings PLC Total assets above 20% of GDP

Hellenic Bank PLC Total assets above 20% of GDP

LT Akcinė bendrovė Šiaulių bankas Among the three largest credit institutions  
in the Member State

MT
Bank of Valletta p.l.c. Total assets above 20% of GDP

HSBC Bank Malta p.l.c. Total assets above 20% of GDP

NL
ABN AMRO Bank N.V. Size (total assets EUR 300–500 bn)

ING Groep N.V. Size (total assets EUR 500–1,000 bn)

AT

Addiko Bank AG Significant cross-border activities

BAWAG Group AG Size (total assets EUR 30–50 bn)

Erste Group Bank AG Size (total assets EUR 150–300 bn)

Raiffeisen Bank International AG Size (total assets EUR 150–300 bn)

Sberbank Europe AG Significant cross-border activities

PT Banco Comercial Português, SA Size (total assets EUR 75–100 bn)

SI Nova Ljubljanska Banka d.d. Ljubljana Total assets above 20% of GDP

FI Nordea Bank Abp Size (total assets EUR 500–1,000 bn)

 

Table 1, cont’d
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Table 2
Spread values for the MES and ΔCoVaR at 95% and 99% over all estimates and estimates with one parameter  P 
fixed

SRM Fixed value 95% ΔP 
95% ΔP 

95% 99% ΔP 
99% ΔP 

99% 

MES

All 0.677 1.137

Inter-FI dependencies

independent 0.660 -0.017
-0.096

1.113 -0.024
-0.255

multivariate 0.503 -0.174 0.651 -0.486

Distribution type

Student’s-t 0.593 -0.084
-0.189

1.025 -0.112
-0.373

normal 0.384 -0.293 0.504 -0.633

Window type

rolling 0.587 -0.090
-0.136

1.002 -0.135
-0.190

EWM 0.495 -0.182 0.893 -0.244

Historical period

125D 0.336 -0.341

-0.289

0.592 -0.545

-0.432250D 0.391 -0.286 0.710 -0.427

500D 0.437 -0.240 0.814 -0.323

ΔCoVaR

All 0.854 1.850

Inter-FI dependencies

independent 0.805 -0.049
-0.154

1.794 -0.056
-0.519

multivariate 0.594 -0.260 0.868 -0.982

Distribution type

Student’s-t 0.734 -0.120
-0.267

1.687 -0.163
-0.678

normal 0.440 -0.414 0.657 -1.193

Window type

rolling 0.733 -0.121
-0.139

1.617 -0.233
-0.240

EWM 0.697 -0.157 1.603 -0.247

Historical period

125D 0.469 -0.385

-0.294

1.033 -0.817

-0.566250D 0.564 -0.290 1.290 -0.560

500D 0.647 -0.207 1.530 -0.320

ΔP 
x% denotes the drop in spread and . is the average.
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Table 3
Spread values for the MES at 95% and 99% separated by the data-generating processes, over all estimates  
and estimates with one parameter P fixed

DGP Fixed value 95% ΔP 
95% ΔP 

95% 99% ΔP 
99% ΔP 

99% 

Normal 
distribution, 
independent 
FIs

All 0.354 0.455

Window type

rolling 0.283 -0.071
-0.115

0.360 -0.095
0.148

EWM 0.194 -0.160 0.254 -0.201

Historical period

125D 0.115 -0.239

-0.231

0.149 -0.306

-0.294250D 0.126 -0.228 0.165 -0.290

500D 0.129 -0.225 0.168 -0.287

Normal 
multivariate 
distribution

All 0.359   0.460

Window type

rolling 0.286 -0.073
-0.118

0.363 -0.097
-0.150

EWM 0.197 -0.162 0.257 -0.203

Historical period

125D 0.116 -0.243

-0.234

0.149 -0.311

-0.298250D 0.128 -0.231 0.166 -0.294

500D 0.131 -0.228 0.172 -0.288

Student’s-t 
distribution, 
independent 
FIs

All 0.501 0.791

Window type

rolling 0.403 -0.098
-0.146

0.639 -0.152
-0.214

EWM 0.307 -0.194 0.515 -0.276

Historical period

125D 0.138 -0.363

-0.346

0.199 -0.592

-0.563250D 0.159 -0.342 0.234 -0.557

500D 0.168 -0.333 0.251 -0.540

Student’s-t 
multivariate 
distribution

All 0.422 0.549

Window type

rolling 0.337 -0.085
-0.133

0.434 -0.115
-0.173

EWM 0.240 -0.182 0.319 -0.230

Historical period

125D 0.128 -0.294

-0.281

0.169 -0.380

-0.361250D 0.145 -0.277 0.193 -0.356

500D 0.151 -0.271 0.202 -0.347

ΔP 
x% denotes the drop in spread and  . is the average.
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Table 4
Spread values for the ΔCoVaR at 95% and 99% separated by the data-generating processes, over all estimates  
and estimates with one parameter P fixed 

DGP Fixed value 95% ΔP 
95% ΔP 

95% 99% ΔP 
99% ΔP 

99% 

Normal 
distribution, 
independent 
FIs

All 0.360 0.534

Window type

rolling 0.269 -0.091
-0.117

0.394 -0.140
-0.174

EWM 0.217 -0.143 0.326 -0.208

Historical period

125D 0.126 -0.234

-0.221

0.191 -0.343

-0.325250D 0.143 -0.217 0.214 -0.320

500D 0.148 -0.212 0.221 -0.313

Normal 
multivariate 
distribution

All 0.372 0.547

Window type

rolling 0.280 -0.092
-0.120

0.407 -0.140
-0.177

EWM 0.223 -0.149 0.333 -0.214

Historical period

125D 0.129 -0.243

-0.230

0.194 -0.353

-0.335250D 0.146 -0.226 0.217 -0.330

500D 0.152 -0.220 0.226 -0.321

Student’s-t 
distribution, 
independent 
FIs

All 0.559 1.155

Window type

rolling 0.426 -0.133
-0.159

0.891 -0.264
-0.294

EWM 0.375 -0.184 0.832 -0.323

Historical period

125D 0.155 -0.404

-0.378

0.276 -0.879

-0.824250D 0.185 -0.374 0.337 -0.818

500D 0.203 -0.356 0.380 -0.775

Student’s-t 
multivariate 
distribution

All 0.485 0.725

Window type

rolling 0.367 -0.118
-0.152

0.538 -0.187
-0.232

EWM 0.298 -0.187 0.448 -0.277

Historical period

125D 0.156 -0.329

-0.308

0.242 -0.483

-0.451250D 0.182 -0.303 0.281 -0.444

500D 0.194 -0.291 0.300 -0.425

ΔP 
x% denotes the drop in spread and .  is the average.
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Table 5
Ranking of parameter contributions to model risk 

Ranking MES ΔCoVaR

95% 99% 95% 99%

1 HP HP HP DT

2 DT DT DT HP

3 WT IFD IFD IFD

4 IFD WT WT WT

Notes:
The parameter contributing the most to the model risk is ranked as 1 and that contributing the least is ranked as 4. 
Abbreviations: historical period (HP), distribution type (DT), window type (WT), inter-FI dependencies (IFD).

Table 6
Statistics of the agreement metrics (Krippendorff’s-alpha and percentage agreement) for the MES and ΔCoVaR 
at 95% and 99% confidence levels

SRM
Krippendorff’s-alpha Percentage agreement

mean (std) minimum maximum mean (std) minimum maximum

MES
95% 0.86 (0.08) 0.60 0.98 0.59 (0.11) 0.37 0.89

99% 0.85 (0.08) 0.59 0.98 0.57 (0.10) 0.37 0.86

ΔCoVaR
95% 0.43 (0.08) 0.09 0.74 0.28 (0.03) 0.20 0.41

99% 0.28 (0.07) 0.03 0.65 0.25 (0.02) 0.18 0.39
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Figure 1
Evolution of the market index built from the FIs within the dataset and comparison with the Euro Stoxx Banks 
index 
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Note: the starting value of the self-built index is 100 points, and index values represent the growth with respect to this value.
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Figure 2
Distribution of relative market capitalization values of all FIs (last simulation day) and distribution of the inter-FI 
price return correlation values (last simulation year) 

0
0.00

Co
un

t
Co

un
t

0.02 0.04 0.06 0.08 0.10 0.12

0
-1.0 -1.5

Average Correlations

0.0 0.5 1.0

20

40

60

80

100

120

5

10

15

20

25
Distribution of market cap values

(final simulation day)

Relative market cap

Distribution of correlation values
(last simulation day)

Correlations between Fls

 

 



How reliable are systemic risk measures?... 489

Figure 3
Model risk of MES at 95% and 99% confidence levels for all FIs
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Figure 4
Model risk of ΔCoVaR at 95% and 99% confidence levels for all FIs
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Figure 5
Example of a distribution of 24 MES estimates as percentage returns 
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Notes:
Losses are negative.
BNP Paribas was the FI chosen, and the predictions were for 27 August 2020.
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Figure 6
Example of the assignment of two banks (Société Générale and Raiffeisen Bank International) for MES at 95%, 
and ΔCoVaR at 95% across all 24 model estimates
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Société Générale S.A.
Rai�eisen Bank International AG
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V9

V10
V11

V12V13V14
V15

V16

V17

V18

V19

V20

V21
V22

V23
V24

Variation in assigned buckets based  on ∆CoVaR estimates 

 Variant information

   

V1 Normal/Univariate: rolling/125D   

V2 Student’s-t/Univariate: rolling/125D   

V3 Normal/Multivariate: rolling/125D   

V4 Student’s-t/Multivariate: rolling/125D   

V5 Normal/Univariate: ewm/125D   

V6 Student’s-t/Univariate: ewm/125D   

V7 Normal/Multivariate: ewm/125D   

V8 Student’s-t/Multivariate: ewm/125D   

V9 Normal/Univariate: rolling/250D   

V10 Student’s-t/Univariate: rolling/250D   

V11 Normal/Multivariate: rolling/250D   

V12 Student’s-t/Multivariate: rolling/250D   

V13 Normal/Univariate: ewm/250D   

V14 Student’s-t/Univariate: ewm/250D   

V15 Normal/Multivariate: ewm/250D   

V16 Student’s-t/Multivariate: ewm/250D   

V17 Normal/Univariate: rolling/500D   

V18 Student’s-t/Univariate: rolling/500D   

V19 Normal/Multivariate: rolling/500D   

V20 Student’s-t/Multivariate: rolling/500D   

V21 Normal/Univariate: ewm/500D   

V22 Student’s-t/Univariate: ewm/500D   

V23 Normal/Multivariate: ewm/500D   

V24 Student’s-t/Multivariate: ewm/500D   

B0
B2B1

B3 B4 B5

Société Générale S.A.
Rai�eisen Bank International AG

 Note: B5 corresponds to the bucket with the highest risk. The predictions were for 30 May 2018.
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Figure 7
Example of the assignment of two banks (Société Générale and Raiffeisen Bank International) for MES at 95%, 
and ΔCoVaR at 95% across the six model estimates for the Student’s-t multivariate distribution
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V4 Student’s-t/Multivariate: rolling/125D    
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Note: B5 corresponds to the bucket with the highest risk. The predictions were for 30 May 2018.
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Figure 8
Monthly average values of Krippendorff’s alpha and percentage agreement of the FI bucketing for MES and 
ΔCoVaR at 95% and 99%
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Jak wiarygodne są miary ryzyka systemowego? Oszacowanie 
ryzyka modelu MES i ΔCoVaR

Streszczenie
Miary ryzyka systemowego (MRS) są kluczowe w analizie stresu w systemie finansowym. Niedosza-
cowanie ryzyka systemowego zwiększa stres w sieci, podczas gdy przeszacowanie może prowadzić do 
nakładania na banki nadmiernych kar. Na wiarygodność tych miar ryzyka systemowego wpływa jed-
nak ryzyko modelu, definiowane w niniejszej pracy jako niepewność wyników modelu wynikająca  
z tzw. błędu parametryzacji. Wcześniejsze badania (Danielsson i in. 2016b) zwracały uwagę na znacz-
ną zmienność wyników MRS, przy czym niektóre z nich wykazywały niewiarygodne rankingi insty-
tucji finansowych. W naszej pracy oparliśmy się na tych ustaleniach, kwantyfikując ryzyko modelo-
we dla dwóch MRS, Marginal Expected Shortfall (MES) i Delta Conditional Value at Risk (ΔCoVaR),  
na przykładzie systemowo ważnych banków europejskich. Ponadto pokazaliśmy wpływ tego modelu  
na rozbieżność między rankingami znaczenia systemowego banków. Celem pracy jest lepsze zrozu- 
mienie ryzyka modelowego w aspekcie MRS oraz tego, jak wybór parametrów może wpływać na ran-
king instytucji finansowych i interpretację ryzyka systemowego.

Badanie ma na celu omówienie ryzyka modelu w MRS i jego konsekwencji dla oceny ryzyka syste-
mowego. W szczególności w badaniu postawiono pytania: w jaki sposób zmienność parametrów mo-
delu oddziałuje na oszacowania MES i ΔCoVaR dla systemowo ważnych banków europejskich oraz jak 
ryzyko modelu oddziałuje na rankingi ryzyka systemowego banków. Dodatkowo zbadano, jak można 
kwantyfikować ryzyko modelu i klasyfikować je pod względem wrażliwości parametrów, aby zapewnić 
większą wiarygodność decyzji opartych na MRS.

Ryzyko modelu istnieje zarówno w MES, jak i w ΔCoVaR ze względu na wrażliwość tych miar 
na zmiany parametrów w ich szacunkach, w tym przypadku przy użyciu techniki Monte Carlo (MC). 
Wpływa ono na ranking ryzyka systemowego banków. Ryzyko modelu jest szczególnie wysokie w przy-
padku instytucji finansowych w okresach dużej zmienności na rynkach. Co więcej, złożoność ΔCoVaR 
czyni tę miarę bardziej wrażliwą na parametryzację w porównaniu z MES, co sugeruje, że bardziej zło-
żone MRS mogą prowadzić do większego ryzyka modelowego.

W badaniu wykorzystano symulację Monte Carlo do oszacowania MES i ΔCoVaR dla 47 banków 
europejskich. Ryzyko modelu skwantyfikowano za pomocą miary rozpiętości, która mierzy rozprosze-
nie oszacowań MRS w przypadku różnych konfiguracji parametrów. Aby przeanalizować zmienność  
w rankingach banków (i ich koszykowaniu), użyto wskaźnika alfa Krippendorffa oraz procentowej 
zgodności. Cztery parametry podlegały zmianie w procesie MC: włączenie/wyłączenie zależności mię-
dzy bankami poprzez macierze korelacji, typ rozkładu (normalny lub t-Studenta), typ okna estymacji 
(ruchome lub ważone wykładniczo) oraz długość okresu historycznego (125, 250 lub 500 dni). Rozwa-
żano dwa punkty widzenia: (1) gdy rozkład MC (normaly/t-Studenta oraz korelacje) był traktowany 
jako parametr wraz z typem okna i okresem historycznym (jeden model z czterema parametrami,  
tj. 24 kombinacje); (2) gdy wybór rozkładu MC działał jako specyfikacja modelu i zmieniano tylko dwa 
parametry: typ okna oraz okres historyczny (cztery modele, każdy z dwoma parametrami, tj. sześć 
kombinacji dla każdego modelu). Ta metoda zapewnia efektywną obliczeniowo alternatywę dla metod  
bootstrapowych i umożliwia analizę wrażliwości przez klasyfikowanie wpływu poszczególnych parame-
trów na ryzyko modelu.
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Wyniki wskazują na znaczne ryzyko modelu zarówno dla MES, jak i ΔCoVaR, z rozpiętościami 
wahającymi się od 68% do ponad 180% średnich oszacowań w różnych warunkach. Zaobserwowano 
również, że ryzyko modelu zwiększa się wraz z poziomem ufności. Alfa Krippendorffa dla zgodności 
między oceniającymi oparta na SRMs wahała się od 0,60 do 0,98 dla MES oraz od 0,03 do 0,74 dla 
ΔCoVaR, podczas gdy procentowa zgodność wynosiła 37–89% dla MES i 18–41% dla ΔCoVaR. Wyniki 
te pokazują dużą zmienność zgodności rankingów w odniesieniu do różnych kombinacji parametrów. 

ΔCoVaR wykazuje większe ryzyko modelu niż MES, co potwierdza, że wzrost złożoności MRS 
zwiększa niepewność. Głównym parametrem przyczyniającym się do ryzyka modelu była długość 
okresu historycznego, co wskazuje, że pamięć o przeszłych wydarzeniach najsilniej wpływa na 
zmienność wyników MRS. Typ rozkładu również odgrywał istotną rolę, podkreślał bowiem znaczenie 
modelowania ogonów rozkładu w MRS. Wyniki te sugerują, że różne konfiguracje parametrów 
mogą prowadzić do zupełnie odmiennych rankingów systemowo ważnych instytucji finansowych, 
komplikując decyzje regulacyjne.

W pracy podkreślono znaczenie uwzględnienia ryzyka modelu w pomiarze ryzyka systemowego. 
Znaczna rozbieżność oszacowań MRS, spowodowana zmiennością parametrów, świadczy o potrzebie 
ostrożnej interpretacji tych modeli w kontekstach regulacyjnych. Regulatorzy powinni rozważyć 
podawanie zakresu oszacowań MRS (np. scenariusze pesymistyczne, optymistyczne i pośrednie), aby 
lepiej ocenić stabilność systemu finansowego, ponieważ wyniki wskazują, że ryzyko modelu wpływa 
na ranking banków. Przedstawiona tutaj metodyka może być wykorzystana w innych modelach 
parametrycznych i stanowi ramy analizy wrażliwości miar ryzyka na parametry.

Jednym z ograniczeń tego badania jest skupienie się wyłącznie na ryzyku parametryzacji. Inne  
źródła ryzyka modelu, takie jak jakość danych i problemy z implementacją, nie zostały zbadane  
w niniejszej pracy. Dodatkowo, chociaż miara rozpiętości skutecznie podkreśla ryzyko modelu, nie obejmuje  
w pełni wszystkich aspektów niepewności, takich jak interakcje między parametrami. Przyszłe badania 
powinny zbadać te wymiary, aby zapewnić bardziej kompleksowe zrozumienie wiarygodności MRS.

Słowa kluczowe: ryzyko modelu, ryzyko systemowe, Marginal Expected Shortfall, Delta Conditional 
Value at Risk, Monte Carlo


