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Abstract
This study explores the critical role of accurate earnings forecasts for publicly traded firms in achieving 
investment success, particularly in markets with limited analyst coverage, such as emerging markets 
like Poland. It evaluates the precision of forecasts generated by a wide array of explanatory variables, 
including accounting, market, and macroeconomic factors, employing gradient-boosting decision 
tree machine learning, multilayer perceptron networks, and convolution networks, contrasted with 
a seasonal random walk model. These models are applied to EPS data from companies listed on the 
Warsaw Stock Exchange from 2008 to 2019. Multivariate methods are trained using a comprehensive 
set of 1,598 explanatory variables, encompassing company-specific financial and market metrics along 
with macroeconomic indicators. The seasonal random walk model demonstrated the lowest error, as 
measured by the Mean Arctangent Absolute Percentage Error (MAAPE), findings validated through 
rigorous statistical examinations. Various robustness checks, employing diverse timeframes and error 
metrics, reaffirm this outcome. The dominance of a simplistic model may arise from the overfitting 
tendencies of complex models and the relatively straightforward dynamics observed in Polish listed 
companies.

Keywords: earnings per share, random walk, gradient-boosting decision tree, multilayer perceptron 
network, convolution network, Warsaw Stock Exchange

 

* University of Warsaw, Faculty of Management; e-mail: wkurylek@wz.uw.edu.pl; ORCID: 0000-0003-0692-3300.



W. Kuryłek   340

1. Introduction

The pricing of company stocks relies heavily on the multiplication of earnings per share (EPS) by 
the price-to-earnings multiple, a critical step in investment analysis. Accurate forecasting of these 
components is paramount, with EPS predictions assuming particular significance. They offer essential 
numerical insights into a company’s future trajectory, providing valuable data on potential market 
valuation and informing auditing expectations. While financial analysts extensively cover companies 
in developed markets like the US, only a fraction, approximately 20%, receive similar attention in 
emerging markets such as Poland. Thus, there exists a compelling need to utilize statistical or machine 
learning models for EPS forecasting.

	This article conducts a comparative evaluation of models, employing an extensive set of explanatory 
fundamental, market, and macroeconomic variables, utilizing the gradient-boosting decision tree 
(XGBoost) machine learning method, the multilayer perceptron artificial neural network (MLP), and 
the convolution neural network (CNN). It encompasses quarterly EPS data for 267 companies listed 
on the Polish stock exchange and uses 1,598 explanatory variables from the 2008–2009 financial crisis 
through the 2020 pandemic.

	Instead of relying solely on the conventional mean absolute percentage error (MAPE) metric, 
which is susceptible to extreme values when the denominator is small, an alternative measure,  
the mean arctangent absolute percentage error (MAAPE) proposed by Kim and Kim (2016), is calculated 
and utilized in this study.

	In summary, this article pursues several objectives. Firstly, it aims to evaluate the performance of 
various cutting-edge machine learning and deep learning methods over a very wide set of explanatory 
variables in EPS prediction. Secondly, it seeks to apply diverse error metrics, varying timeframes,  
and a range of statistical tests to validate the outcomes of these experiments. Thirdly, it endeavours 
to adapt and employ a relative performance error metric to address scenarios where actual profits 
approach zero, utilizing MAAPE as an error metric. Additionally, it applies other popular error metrics 
as a robustness check. Lastly, it aims to elucidate the practical implications of these findings for 
investment strategies in Polish stocks.

2. Literature review

The forecasting of EPS through algorithms commenced in the 1960s, prompting scholarly investigation 
primarily focused on autoregressive integrated moving average (ARIMA) models (Ball, Watts 1972; 
Watts 1975; Griffin 1977; Foster 1977; Brown, Rozeff 1979). These models constituted the main category 
under scrutiny, with research outcomes exhibiting variability: while certain studies advocated for the 
simplicity of the basic random walk model, suggesting that more complex models did not consistently 
outperform it, others arrived at divergent conclusions. A similar inquiry into the Polish market was 
conducted by Kuryłek (2023a).

	Over time, a consensus began to form favouring ARIMA-type models for their typically accurate 
forecasts (Lorek 1979; Bathke, Lorek 1984). This consensus endured until the late 1980s, when  
a prevailing belief arose suggesting that forecasts made by financial analysts surpassed those generated 
by time series models (Brown et al. 1987). However, Conroy and Harris (1987) noted the superiority 
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of analysts’ forecasts in short-term horizons, which diminished over longer periods. This perspective 
persisted until recent years, when the superiority of analysts over time series models was once again 
called into question (Lacina, Lee, Xu 2011; Bradshaw et al. 2012; Pagach, Warr 2020; Gaio et al. 2021).

	Furthermore, since the late 1960s, researchers have explored various approaches employing 
exponential smoothing for EPS prediction (Elton, Gruber 1972; Ball, Watts 1972; Johnson, Schmitt 1974; 
Brooks, Buckmaster 1976; Ruland 1980; Brandon, Jarrett, Khumawala 1987; Jarrett 2008), yielding mixed 
findings. The research for the Polish market was conducted by Kuryłek (2023b).

	Lorek and Willinger (1996) demonstrated the superiority of multivariate cross-sectional models 
over firm-specific and common-structure ARIMA models. Lev and Thiagarajan (1993) identified  
12 fundamental signals from financial ratios, subsequently utilized by Abarbanell and Bushee (1997) 
for EPS forecasting. Similar fundamental variables were employed by Cao and Gan (2009), Cao and 
Parry (2009), Ahmadpour, Etemadi and Moshashaei (2015), and Ball and Ghysels (2017) for multivariate 
EPS forecasting using neural networks, confirming their effectiveness. Ohlson (1995, 2001) as well as 
Olhson and Juettner-Nauroth (2005) formulated a residual earnings model, while Pope and Wang (2005, 
2014) established theoretical frameworks linking earnings forecasts to accounting variables and stock 
prices. Li (2011) developed a model for forecasting earnings for loss-making firms, demonstrating its 
efficacy. Lev and Souginannis (2010) provided evidence of the usefulness of estimate-based accounting 
items for predicting next year’s earnings, albeit with limited success in subsequent years. Hou, van Dijk 
and Zhang (2012) achieved substantial R2 coefficients in cross-sectional regression models for earnings 
forecasting. Li and Mohanram (2014) compared various models, revealing the superiority of some over 
others. Harris and Wang (2019) found Pope and Wang’s (2005) model generally less biased and more 
accurate.

	Recent studies have highlighted the importance of artificial neural networks in predicting EPS, 
yielding mixed outcomes. Atiya, Shaheen, and Talaat (1997) demonstrated the effectiveness of neural 
networks based on fundamental characteristics for stock price prediction, consistently outperforming 
other methods. Conversely, Lai and Li (2006) found that an ANN model had the lowest accuracy in 
EPS prediction. Cao, Schniederjans and Zhang (2004) compared neural feedforward networks (MLP) to 
other models, showing their superior accuracy. Cao and Parry (2009) consistently favoured univariate 
neural network models over linear regression, revealing that genetic algorithms improved performance 
in estimating network weights. Similarly, Cao and Gan (2009) confirmed the superiority of neural 
networks, particularly when optimized using genetic algorithms, for predicting EPS in Chinese 
companies. Gupta, Khirbat, and Singh (2013) identified an optimal architecture for stock market 
forecasting using multilayer perceptron networks, emphasizing the role of factors like EPS and public 
confidence. Ahmadpour, Etemadi, and Moshashaei (2015) achieved remarkable success with standard 
MLP neural networks, with extracted rules showing higher accuracy than pure MLP models. Chen  
et al. (2020) explored various prediction methods, with ensemble methods proving the most accurate. 
Elend et al. (2020) found that LSTM networks outperformed other models in predicting EPS. Suler, 
Vochozka, and Vrbka (2020) successfully used LSTM networks for bankruptcy prediction in the Czech 
Republic. Decision tree-based techniques for EPS forecasting yielded mixed results (Delen, Kuzey, Uyar 
2013; Gramacy, Gerakos 2013; Elamir 2020; Chen et al. 2020). Recent advances in machine learning and 
deep learning facilitated innovative experiments. Xiaoqiang (2022) provided an overview of machine 
learning techniques for financial ratios forecasting, including EPS. Furthermore, Xiaoqiang’s (2022) 
article covered deep learning and machine learning techniques like convolutional neural networks and 
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decision trees for EPS prediction. In the latest research, Dreher, Eichfelder, and Noth (2024) found that 
considering tax loss carryforwards did not improve EPS forecasts for German listed companies and 
sometimes worsened predictions in out-of-sample tests, using tax footnotes information.

	The incorporation of macroeconomic and market variables in EPS forecasting has existed for nearly 
three decades. Pioneering research by Chant (1980) employed three macroeconomic variables: growth 
in money supply, bank loans, and the stock market index, to predict corporate earnings. His findings 
suggested that models utilizing these leading economic indicators yielded lower errors compared to 
pure time series models. Lev (1980) observed that simple-index models utilizing gross national product 
(GNP) and total corporate profits after taxes as dependent variables for predicting sales, operating 
income, and net income generally outperformed random walk models. Lev and Thiagarajan (1993), 
in a seminal work, proposed that macroeconomic variables such as annual changes in CPI, GNP, and 
business inventories could significantly influence corporate performance.

	Bansal, Strauss, and Nasseh (2015) conducted simulations to generate out-of-sample forecasts for  
a large set (21) of individual autoregressive distributed lag (ARDL) models. Each model incorporated 
one plausible predictor variable identified from prior research. These variables encompassed not only 
firm-specific accounting data, but also market-wide and macroeconomic factors, including S&P 500 
dividend yield, S&P 500 PE ratio, total earnings for the S&P, Dow Jones dividend yield, corporate bond 
yield for long-term AAA-rated corporate bonds, default spread between BAA- and AAA-rated corporate 
bonds, yield spread (difference between 10-year Treasury bond and 3-month Treasury bill yields), 
Treasury bill yield (3-month), and CPI inflation.

	Ball and Ghysels (2017) employed an ARDL framework that incorporated two firm-level stock 
market predictor variables: excess stock returns and return volatility. Additionally, their model included 
the following macroeconomic predictor variables: industrial production, CPI inflation index, oil price 
growth, 3-month Treasury bill yields, and bond term spread (10-year Treasury vs. 3-month Treasury 
bill), default spread (BAA vs. AAA corporate bonds).

3. Data and methodology

3.1. Data

The Polish stock market, integrated into the European Union post-2004, boasts considerable depth, 
with a market capitalization reaching USD 197 billion and accommodating 774 listed companies by the 
end of 2021. Despite this, analyst coverage for these stocks is notably limited compared to the United 
States or Western Europe, with only around 20% of the 711 listed companies receiving attention in 
2019. This underscores the need for statistical forecasting of critical financial data using analytical 
methodologies. This study primarily focuses on the earnings per share (EPS) data series and other 
financial explanatory variables sourced from EquityRT, a financial analysis platform. EPS patterns 
of companies listed on the Warsaw Stock Exchange are analysed from Q1 2010 to Q4 2019, covering 
significant structural shifts like the 2008–2009 financial crisis and the onset of the COVID-19 pandemic 
in 2020. Since 2020, a period of turbulence began, initiated by the COVID-19 pandemic in 2020, 
followed by the war in Ukraine in 2022, which triggered the energy crisis. Therefore, the year 2019 was 
the last year of relative calm, a period in which models could be tested. If a model is unable to achieve 
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good predictive results during a period of stability and predictability, it is even less capable during 
periods of market disruption, when extrapolating trends from the past into the future (as all models 
do) is inherently fraught with significant error. Furthermore, the author’s intention was to maintain 
the same sample as in other articles on the same research topic (Kuryłek 2023a, 2023b, 2024) to ensure 
precise comparability of results. For forecasting, data from Q1 2010 to Q4 2018 (36 quarters) are utilized 
for model estimations, with Q1 2019 to Q4 2019 data reserved for out-of-time validation testing. Forecast 
horizons range from 1 to 4 quarters ahead, with additional validation samples from the years 2017 
and 2018. The dataset, after comprehensive coverage and excluding splits and reverse splits, comprises 
267 companies. Also companies that ceased publishing financial reports during the study period were 
excluded from the sample.

The explanatory variables

	▪ The seasonal random walk model (SRW) 
	The SRW can be described as:

				 
4       t t tEPS EPS ε−

−

= +  where tε  are IID and ( )2~ 0,t Nε σ    

 
4t tEPS EPS=

 ( )1 1 1 1 2
4 1 8 1 1 4 4, , , ,.., , ,.., , ,.., , , n n n

t t t t t t t t t t t t tEPS f EPS EPS EPS X X X X X X Y Y ε+ − − − − − −= +

 1 4, ,i iA A…

 1 4, ,i iF F…

 ˆ
tQ

 i i
j ji

j i
j

A F
APE

A
−

=

                           0

 
 

i i
j j

i i i
j j j

i
j

if A F

AAPE A F
arctan  otherwise

A

⎧ = =
⎪⎪ ⎛ ⎞= −⎨

⎜ ⎟⎪ ⎜ ⎟
⎪ ⎝ ⎠⎩

[−π ⁄ 2, π ⁄ 2]

 

1 1

1 1 i iI I
j ji

j j i
i i j

A F
MAAPE AAPE arctan

I I A= =

⎛ ⎞−
= = ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∑

 :           0H medians of AAPEs of a pair of models  are the same

〈

0

		         (1)

	The forecast represented by, 

4       t t tEPS EPS ε−

−

= +  where tε  are IID and ( )2~ 0,t Nε σ    

 
4t tEPS EPS=

 ( )1 1 1 1 2
4 1 8 1 1 4 4, , , ,.., , ,.., , ,.., , , n n n

t t t t t t t t t t t t tEPS f EPS EPS EPS X X X X X X Y Y ε+ − − − − − −= +

 1 4, ,i iA A…

 1 4, ,i iF F…

 ˆ
tQ

 i i
j ji

j i
j

A F
APE

A
−

=

                           0

 
 

i i
j j

i i i
j j j

i
j

if A F

AAPE A F
arctan  otherwise

A

⎧ = =
⎪⎪ ⎛ ⎞= −⎨

⎜ ⎟⎪ ⎜ ⎟
⎪ ⎝ ⎠⎩

[−π ⁄ 2, π ⁄ 2]

 

1 1

1 1 i iI I
j ji

j j i
i i j

A F
MAAPE AAPE arctan

I I A= =

⎛ ⎞−
= = ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∑

 :           0H medians of AAPEs of a pair of models  are the same

〈

0

 utilizes the value delayed by 4 quarters  
as the prediction, eliminating the need for parameter estimation. This model serves as a benchmark, 
as evidenced by Kuryłek (2023a, 2023b), showcasing its superiority over time series models specifically 
within the Polish context.
	▪ The multivariate model with all available variables (ALL)

	Due to the challenge of identifying crucial variables in EPS forecasting, the author opts to 
incorporate nearly all variables accessible within the EquityRT platform. Consequently, the multivariate 
model can be expressed as follows:
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	Considering the need to capture both year-to-year and quarter-to-quarter dynamics, the model 
incorporates lags of the independent variables at 4, 5, and 8 quarters. The exclusion of lags t – 1, t – 2, and 
t – 3 stems from the assumption that a single model will be used to forecast one year ahead, rather than 
employing four separate models for the first, second, third, and fourth quarters. Therefore, to generate 
a forecast for the fourth quarter of 2019, for instance, explanatory variables from the first, second, 
and third quarters are not required, as these data points are not yet available before the start of 2019. 
Thus, the independent variables (designated as X i

t and Y i
t  ) encompass factors lagged by these periods, 

including the lagged dependent variable, 67 accounting fields reported from financial statements  
on a per-share basis, 99 financial ratios, and 3 firm-specific market variables (end-of-quarter share price, 
mean price within the quarter, and price standard deviation). Additionally, 362 macro variables are 
included, sourced from various databases contained in the EquityRT such as the International Monetary 
Fund (189 variables), OECD (143 variables), Eurostat (56 variables), and the Bank of International 
Settlements (20 variables). Furthermore, 2 industry classification variables (Y1

t and Y 2
t) available on the 

EquityRT platform are incorporated without delay, as they may play a role as potentially explanatory   
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variables. Consequently, the vector of independent variables spans 1,598 dimensions, and the model is 
trained using 7,476 observations (28 quarters multiplied by 267 companies) to predict EPS for the year 2019.

 

3.2. Estimation techniques

The XGBoost (XGB) – a gradient-boosting decision tree

XGBoost, an abbreviation for eXtreme Gradient Boosting, was initially introduced by Chen and 
Guestrin (2016) as a significant improvement over the original gradient boosting algorithm, renowned 
for its speed and effectiveness. This advanced machine learning technique, rooted in decision tree 
algorithms from the 1960s, is widely employed in regression and classification tasks. It constructs  
a prediction model by combining weak prediction models, typically simple decision trees, in an 
ensemble fashion. Each iteration of trees aims to rectify errors made by the previous ones, with the 
gradient descent algorithm iteratively adjusting the weights of these weak learners. This iterative 
process continues until the loss function is minimized or a predefined stopping criterion is met. 
XGBoost incorporates various techniques to enhance the performance of the gradient boosting model, 
including regularization to mitigate overfitting by imposing penalties on the loss function, tree 
pruning to remove redundant branches and improve model stability, and parallelization to expedite 
the training process. Furthermore, XGBoost adeptly captures inherent nonlinearities in the data. For  
a deeper understanding, Simon’s (2020) book offers valuable insights. It would be ideal to minimize a loss 
function (objective function or internal metric) that is equivalent to the external metric, i.e. MAAPE. 
According to the requirements of the xgb library, implementing a custom loss function requires 
calculating its first derivative (gradient) and second derivative (Hessian). The problem is that MAAPE 
is not a function with a first and second derivative over its entire domain. Therefore, the most standard 
loss function, reg: squarederror, i.e. mean square error (MSE), was used. This methodology has been 
implemented using the xgb library in Python, with hyperparameters fine-tuned (Banerjee 2020) by the 
hyperopt library to optimize forecast performance. Optimized were the following hyperparameters: 
colsample_bytree, learning_rate, max_depth, min_child, n_estimators, reg_alpha, reg_lambda, and 
subsample. The optimal choice of them was: colsample_bytree (0.8659879434985166), learning_rate 
(0.13438562077762467), max_depth (5), min_child_weight (9), n_estimators (55), random_state (350), 
reg_alpha: (1.0070608627374555), reg_lambda (0.7810551944833559), subsample: (0.9351229731753115). 
Ultimately, 31 variables were selected out of 1,598 to construct the boosting trees, and the list of these 
variables is provided in the Appendix. 

Artificial neuron networks (ANNs)

The artificial neural networks examined in this research utilized the TensorFlow module in Python 
for training. These networks are characterized as feedforward, indicating that data progresses 
unidirectionally from the input layer to the output layer. Artificial neural networks (ANNs) are 
commonly applied to investigate cause-effect relationships in intricate systems, often within 
the framework of large datasets. However, they can also be employed with smaller datasets, as 
demonstrated in fields such as health sciences by Pasini (2015), similar to the context of this study. 
Hyperparameters, including network width and depth (i.e. the number of neurons per layer and the 
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number of layers), were optimized using the hyperas library in Python. The models underwent training 
via the backpropagation algorithm based on gradient descent, with only 20 epochs utilized (where 
one epoch constitutes a complete run-through of the training set). Backpropagation, introduced by 
Werbos (1988) in the late 1980s, is a standard technique for training neural networks, involving the 
backward propagation of errors. It adjusts the weights of a neural network based on the error rate 
from the previous epoch, aiming to minimize the error by feeding it back through the network. 
The learning rate dictates the pace of adjustment, with the objective of minimizing error rates and 
improving the model’s generalization capability. Once a certain number of epochs are completed,  
the algorithm converges to a state where there is minimal change in loss over subsequent epochs, 
typically reaching a local optimum of the defined loss function. Input parameters are often standardized 
for ANNs when dealing with multivariate data. In all models analysed, the hyperbolic tangent (tanh) 
activation function, a popular choice, was applied across all layers. Additionally, the weights between 
layers were initialized using the glorot_uniform initializer proposed by Bengio and Glorot (2010), 
which generates initial weight values from a uniform distribution. For further insights into various 
network architectures and parameters, refer to the book by Bengio, Courville, and Goodfellow (2017). 
The input data for the neural networks were normalized using the MinMaxScaler() function from 
the sklearn library. Due to the large number of explanatory variables from multiple sources and their 
potential multicollinearity, the system could exhibit numerical instability; nevertheless, it converged to 
a minimum in practice in all analysed cases.

The multilayer perceptron network (MLP)

An artificial neural network known as a multilayer perceptron (MLP) comprises multiple layers of 
interconnected nodes. Each layer’s nodes establish connections with those in the subsequent layer, 
and the connection weights are learned during training. Typically, an MLP consists of three or more 
layers: an input layer, one or more hidden layers, and an output layer. Within each hidden layer,  
the output of each node results from a weighted sum of the preceding layer’s node outputs, augmented 
by a bias term. MLP neural networks trace their origins back to 1958, when Rosenblatt (1958) introduced 
a layered network of perceptrons, inspired by the brain’s functionality. The number of layers and neurons 
constitute the network’s hyperparameters, which require fine-tuning. While deeper neural networks 
excel in data processing, excessively deep layers can pose challenges such as vanishing gradients and 
overfitting. Empirical rules of thumb guide the determination of the optimal number and size of hidden 
layers, as detailed in Heaton’s (2008) book. According to this source, a single hidden layer is sufficient 
to approximate any function. Therefore, the network in this study was designed with one hidden layer. 
Additionally, a widely endorsed guideline suggests that the optimal size of the hidden layer should 
lie approximately between that of the input and output layers. In this instance, the hidden layer’s size 
corresponds to the mean of the sizes of the input and output layers. 

The convolution neural network (CNN) 

A convolutional neural network (CNN) is a specialized type of feed-forward neural network designed 
to process data with a grid-like topology, such as images. CNNs draw inspiration from the functioning 
of the visual cortex in animals. The fundamental component of a CNN is the convolution layer, 
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which takes an input image and applies a filter to extract features. This filter, also known as a kernel,  
is a small matrix of weights that moves across the input image, producing a feature map that highlights 
important image characteristics. Through the optimization of filters, the network autonomously 
learns feature engineering. Additionally, CNNs often incorporate pooling layers to reduce the size 
of feature maps, thereby enhancing computational efficiency by summarizing information in each 
region. Following pooling, the image is flattened into a one-dimensional vector, and a dense layer 
from the MLP network with one input and output layer is applied. The architecture of CNNs traces its 
origins to Fukushima’s “neocognitron” introduced in 1980, with modern CNNs evolving in the 1990s, 
building upon this foundation. To mitigate issues like vanishing and exploding gradients observed in 
earlier neural networks, CNNs utilize regularized weights over fewer connections (Fukushima 1980). 
Recently, CNNs have found applications in financial time series analysis, such as stock price prediction 
by Gabbouj et al. (2017) and EPS forecasting by Elend et al. (2020). In the analysis presented here,  
the input is a vector of length 1,598, which can be conceptualized as a rudimentary image of dimensions 
34 × 47. An illustration of such an image is depicted in Figure 1.

3.3. Mean Arctangent Absolute Percentage Error (MAAPE)

Using the symbols 
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, to represent the actual earnings per share (EPS) from the first to the fourth 
quarter of 2019 for a specific firm I, and 
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, where  
t = 37,.., 40 for i-th company), the absolute percentage error (APE) of such prediction during the j-th 
quarter of 2019, for any firm i, can be formulated as follows:
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	Nonetheless, the absolute percentage error (APE) presents a notable constraint: it can yield 
infinite or undefined values as the actual figures approach or reach zero, a scenario often encountered 
in earnings forecasts. Additionally, exceedingly low actual figures, usually below one, can lead to 
significant percentage errors (outliers). Moreover, when actual values are zero, the APE becomes 
infinite or undefined. To mitigate this challenge, Kim and Kim (2016) introduced the arctangent 
absolute percentage error as an innovative solution in this field.

			
			

					     

4       t t tEPS EPS ε−

−

= +  where tε  are IID and ( )2~ 0,t Nε σ    

 
4t tEPS EPS=

 ( )1 1 1 1 2
4 1 8 1 1 4 4, , , ,.., , ,.., , ,.., , , n n n

t t t t t t t t t t t t tEPS f EPS EPS EPS X X X X X X Y Y ε+ − − − − − −= +

 1 4, ,i iA A…

 1 4, ,i iF F…

 ˆ
tQ

 i i
j ji

j i
j

A F
APE

A
−

=

                           0

 
 

i i
j j

i i i
j j j

i
j

if A F

AAPE A F
arctan  otherwise

A

⎧ = =
⎪⎪ ⎛ ⎞= −⎨

⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

[−π ⁄ 2, π ⁄ 2]

 

1 1

1 1 i iI I
j ji

j j i
i i j

A F
MAAPE AAPE arctan

I I A= =

⎛ ⎞−
= = ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∑

 :           0H medians of AAPEs of a pair of models  are the same

〈

0
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	The rationale behind this approach arises from the nature of the arctan function, which transforms 
values spanning from -∞ to +∞ into the range of [-π /2, π /2]. Consequently, the MAAPE for the j-th 
quarter across all I companies in the dataset can be formulated as:
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	The selection of MAAPE over MAPE (Mean Absolute Percentage Error) was deliberate due to 

the presence of companies with actual profits nearing zero within the examined dataset. In scenarios 
where only a single observation approaches zero while others remain significantly distant,  
the MAPE for that specific observation can escalate to an extremely large value, approaching infinity. 
This phenomenon could potentially overshadow the mean calculation, rendering the remaining 
observations inconsequential.

3.4. The statistical test

To evaluate the statistical significance of variations in MAAPE among multiple models, a nonparametric 
two-sided Wilcoxon test, as elucidated by Wilcoxon (1945), is utilized. This test functions as a paired 
difference test for two matched samples. It is noteworthy that this test doesn’t necessitate specific 
assumptions regarding a probability distribution, except for the symmetry of the difference in 
scores and the independence of these differences. Ruland (1980) provided detailed insights into 
the implementation of the Wilcoxon test in validation, particularly in determining whether errors 
generated by different EPS models exhibit statistical differences. Distinct tables containing p-values  
are generated for each quarter, spanning from one to four, as well as for all quarters collectively.
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	Should the p-values of each test drop below the predetermined significance threshold of 0.05,  
the null hypothesis for each test would be deemed invalid. This principle, commonly employed, draws 
from multiple sources, such as Ruland (1980). 

4. Results

4.1. Empirical findings

The seasonal random walk (SRW) model, as delineated in Table 1, consistently outperforms all 
other models throughout each quarter and in the entirety of 2019, demonstrating superior overall 
performance and registering the lowest MAAPE. Conversely, the multilayer perceptron model (MLP) 
displayed the weakest performance among all the approaches. Following closely behind the best was 
the XGBoost (XGB) approach, while the convolution neural network (CNN) fared slightly worse.

	To ascertain whether the errors of the top-performing model significantly differ from those  
of the other approaches, the Wilcoxon nonparametric test was employed to compare the AAPE medians 
between the SRW model and all other methods. As illustrated in Table 2, the findings indicate that  
the seasonal random walk (SRW) model consistently showcases statistically lower errors compared  
to the other approaches across all the analysed periods, except for the 2nd quarter of 2019. In this quarter,  
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the results of the seasonal random walk and the XGBoost are not statistically distinguishable  
at the 0.05 statistical significance level. Furthermore, in the 4th quarter, the results of the Wilcoxon 
test for the seasonal random walk and XGBoost combination, as well as the seasonal random walk and  
the convolution neural network, only marginally fall below this threshold.   

4.2. Robustness checks

Robustness evaluations were conducted across different years and two popular error metrics. It is 
noteworthy that throughout all the examined years – 2017, 2018, and 2019 – the seasonal random 
walk model consistently yielded superior forecasts compared to alternative methods, as illustrated in 
Table 3. In 2018, the least effective approach was the XGBoost, while in 2017, it was the convolution 
neural network. Surprisingly, the performance of the multilayer perceptron network (MPL) exhibited  
a remarkable improvement in these years compared to 2019. Additionally, the Wilcoxon test was 
utilized to compare all model pairs against the seasonal random walk model, and the corresponding 
p-values for each year are detailed in Table 4. Across all these years, the seasonal random walk model 
consistently demonstrated statistically superior outcomes compared to alternative methods. Therefore, 
the continual dominance of the seasonal random walk model becomes evident over time.

	Table 5 presents an evaluation of the performance of the analysed models using alternative error 
metrics: Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). This evaluation covers  
all quarters aggregated for the year 2019. To ensure a fair comparison, these metrics were adjusted  
for Consumer Price Index (CPI) inflation. This adjustment guarantees equivalence in the present value 
of future errors in nominal terms with current errors. Consistent with previous observations in 2019, 
the seasonal random walk model exhibited the lowest errors across all metrics, including both RMSE 
and MAE. Conversely, the multilayer perceptron network performed the worst in 2019 according to 
both error metrics, as seen previously in the case of MAAPE.

	The p-values contained in Table 6, based on the Wilcoxon test, underscore significant differences 
between the outcomes of the SRW model and other model pairings. However, for the combination of 
XGBoost and the seasonal random walk, the p-value is marginally below the 0.05 significance level, 
specifically concerning the RMSE metric.

	The research findings indicate that despite incorporating an extensive array of explanatory 
variables encompassing financial, market, and macroeconomic factors, and utilizing advanced 
forecasting algorithms based on them, there is no improvement in performance. Furthermore, these 
sophisticated approaches fail to outperform the basic seasonal random walk method.

4.3. Discussion

The relatively inferior performance of more complex models, such as those relying on gradient-boosting 
decision trees or artificial neural networks, can be attributed to overfitting. Overfitting leads to unstable 
relationships among variables, contingent on the specific test dataset. Utilizing such relationships  
for predictions is only reasonable if the statistical relationship is sufficiently robust, as highlighted 
by Lev and Souginannis (2010). This observation is consistent with the findings of Dreher, Eichfelder 
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 and Noth (2024), who also demonstrated, for German listed companies, that complex deep learning 
approaches, while optimizing explanatory power within the sample, do not perform well for out-of-
-sample prediction. These sophisticated models risk overparameterizing the market’s straightforward 
behaviour, resulting in larger forecast errors.

	The rationale behind the superior performance of simpler models may align with the Polish 
scenario. Advanced models often tend to be overly intricate, possessing an excess of parameters  
to describe relatively straightforward economic phenomena. This observation further corroborates  
the research conducted by Kuryłek (2023a, 2023b), which showed that even basic models like ARIMA 
and exponential smoothing, effective for the US market, were outperformed by the simple seasonal 
random walk model in Poland. This reinforces the hypothesis that the inherent simplicity of the Polish 
stock market likely underpins the effectiveness of the seasonal random walk model, or alternatively, 
additional calibration for out-of-sample predictions might be necessary.

	Hence, straightforwardly applying any of these sophisticated techniques beyond the conventional 
seasonal random walk in Poland for EPS forecasting in investment contexts appears impractical. 
Furthermore, considering that EPS behaviour follows a seasonal random walk and acknowledging that 
stock prices are derived from the multiplication of the P/E multiple by EPS, one might infer that stock 
prices exhibit at least as much randomness as EPS. Since EPS behaviour, characterized by a random 
walk, is inherently challenging, accurately predicting stock prices for a period extending at least one 
quarter ahead becomes even more daunting.

	In shorter timeframes, when EPS remains constant, stock price forecasting behaves similarly to 
P/E multiples. Consequently, exploring methods to forecast P/E multiples for periods shorter than 
one quarter, occurring between the publication of quarterly financial reports, could be of significant 
interest from an investment perspective. The forecast generated by the seasonal random walk 
essentially represents a value from the corresponding quarter of the previous year. This implies that for 
predicting future prices, even over extended horizons, the P/E multiple might carry more significance 
than next year’s earnings of companies.

	This aligns with economic theory, which suggests that the P/E multiple is influenced by expected 
future earnings growth, future interest rates, and market sentiment or premium reflecting investor risk 
appetite, whereas EPS forecasts pertain only to near-future earnings. In both short-term and long-term 
contexts, the conclusion is clear: for investment, the P/E multiple holds greater importance than EPS 
prediction.

5. Conclusions

The study investigates the predictive capacities of four methodologies: the seasonal random walk (SRW), 
gradient boosting tree (XGB), multilayer perceptron network (MLP), and convolutional neural network 
(CNN). These multivariate approaches are trained using a very comprehensive set of 1,598 explanatory 
variables, encompassing firm-specific financial and market variables alongside macroeconomic 
indicators. EPS forecasting holds significant importance in emerging markets like Poland, where 
financial analyst coverage of listed companies is limited. Analysing quarterly EPS data from 267 Polish 
firms over the period 2010 to 2019, the SRW model consistently exhibited the lowest error rates, offering 
a more precise depiction of the Polish market compared to alternative models. Moreover, the SRW 
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model consistently outperformed other methods across various periods and error metrics such as RMSE 
or MAE. This trend is supported by Wilcoxon tests and can be attributed to the overparameterization 
of complex models, their proneness to overfitting, and the relatively simplistic nature of the Polish stock 
market. 

	The research findings suggest that despite the inclusion of a wide range of explanatory variables 
covering financial, market, and macroeconomic factors, and the application of advanced forecasting 
algorithms based on them, there is no enhancement in performance. 

	The practical implication of this research suggests that employing techniques beyond the standard 
seasonal random walk for EPS forecasting in Poland lacks practical justification. However, depending 
on the seasonal random walk for EPS modelling implies that forecasted stock prices may exhibit 
significant randomness, posing challenges for prediction. Therefore, forecasting the P/E multiple might 
hold more significance than predicting EPS for future stock price projections, particularly in shorter 
investment horizons when EPS remains constant.

	Future research avenues could explore the correlation between forecasting accuracy and firm size, 
with industry sector analysis potentially influencing the selection of the most suitable EPS forecasting 
model. Investigating time series transformations to normalize EPS distributions could provide valuable 
insights. Additionally, incorporating analysis of the text from companies’ public communications 
presents an intriguing prospect. Comparing the predictive accuracy of the best algorithmic model 
with forecasts from market analysts offers another interesting avenue. Furthermore, assessing the 
performance and accuracy of various predictive models and financial analysts’ projections during 
economic downturns, such as the 2008–2009 financial crisis or the COVID-19 pandemic, and the 
onset of the war in Ukraine, could yield valuable insights. Identifying seasonal patterns through  
the SRW model may provide insights into investment strategies, potentially challenging the “weak form”  
of the Efficient Market Hypothesis (EMH). Further research could also consider dividing the analysed 
period into sub-periods of bull and bear markets (in reference to the WIG index).
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Appendix

The list of selected variables for XGBoost:
1. Changes in provisions per share lagged by 4 quarters
2. Cash and cash equivalents, end of period per share lagged by 4 quarters 
3. Operating profit per share lagged by 8 quarters
4. Cash and marketable securities per share lagged by 8 quarters   
5. Inventories per share lagged by 4 quarters   
6. Long-term receivables per share lagged by 4 quarters  
7. Operating expenses per share lagged by 4 quarters  
8. Operating expenses per share lagged by 5 quarters    
9. Short-term accrued expenses per share lagged by 8 quarters

10. Labour productivity per hour lagged by 4 quarters
11. Retail trade volume index seasonally adjusted lagged by 4 quarters 
12. �Balance of payment: financial account – net portfolio investments in debit instruments lagged  

by 8 quarters 
13. Central bank: other foreign liabilities: liabilities to non-residents lagged by 8 quarters 
14. Residential real estate loans to total loans lagged by 8 quarters 
15. Manufacturing selling prices future tendency lagged by 8 quarters 
16. Gross margin index lagged by 8 quarters 
17. Book value per share lagged by 4 quarters 
18. Material fixed asset turnover – trailing 12 months lagged by 5 quarters
19. �Net debt / EBITDA (Including Other Operation Income/Expense) – trailing 12 months lagged  

by 4 quarters
20. �Net debt / EBITDA – trailing 12 months lagged by 5 quarters 
21. Capex / net sales – trailing 12 months (%) lagged by 4 quarters 
22. Net margin – trailing 12 months lagged by 4 quarters 
23. Receivables turnover – trailing 12 months lagged by 8 quarters 
24. Cash flow return on investment – trailing 12 months lagged by 5 quarters 
25. Working capital (net) / sales – trailing 12 months (%) lagged by 5 quarters 
26. Change of EBITDA lagged by 4 quarters
27. Change of EBITDA lagged by 8 quarters
28. Current ratio lagged by 4 quarters
29. Days sales in receivables index lagged by 5 quarters 
30. EBITDA ROA – trailing 12 months lagged by 4 quarters 
31. Equity / assets lagged by 4 quarters. 
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Figure 1
The example of 34 × 47 picture representing KGHM company

Table 1
Summary statistics on forecast errors for 2019 quarters

Model Q1 MAAPE Q2 MAAPE Q3 MAAPE Q4 MAAPE Total 
MAAPE

SRW 0.658 0.702 0.653 0.736 0.687

XGB_ALL 0.759 0.743 0.779 0.785 0.766

MLP_ALL 1.274 1.290 1.263 1.214 1.260

CNN_ALL 0.794 0.773 0.787 0.786 0.785
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Table 2
P-values of the Wilcoxon test of forecast errors for SRW and respective models in 2019

Quarter Model XGB_ALL MLP_ALL CNN_ALL

1 SRW 0.000 0.000 0.000

2 SRW 0.061 0.000 0.004

3 SRW 0.000 0.000 0.000

4 SRW 0.041 0.000 0.046

All SRW 0.000 0.000 0.000

Table 3
Summary statistics on forecast errors for all quarters 2017–2019

Model
MAAPE

2017 2018 2019

SRW 0.686 0.711 0.687

XGB_ALL 0.821 0.791 0.766

MLP_ALL 0.881 0.786 1.260

CNN_ALL 0.795 0.782 0.785

Table 4
P-values of paired Wilcoxon test of forecast errors for all quarters 2017–2019 and SRW model

Year Model XGB_ALL MLP_ALL CNN_ALL

2017 SRW 0.000 0.000 0.000

2018 SRW 0.000 0.000 0.000

2019 SRW 0.000 0.000 0.000
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Table 5
Summary statistics on forecast errors for RMSE and MAPE in 2019

  SRW XGB_ALL MLP_ALL CNN_ALL

RMSE 0.937 1.191 2.070 1.334

MAPE 0.705 0.958 1.864 1.105

Table 6
P-values of paired Wilcoxon test of forecast errors for RMSE and MAE in 2019

Measure Model XGB_ALL MLP_ALL CNN_ALL

RMSE SRW 0.045 0.000 0.000

MAE SRW 0.024 0.000 0.000
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Czy uwzględnienie szerokiego zestawu zmiennych objaśniających 
jest istotne w prognozowaniu EPS? Dowody z Polski

Streszczenie

W niniejszym artykule zbadano rolę dokładnych prognoz zysków spółek notowanych na giełdzie –  
kluczową w osiąganiu sukcesu inwestycyjnego, szczególnie na rynkach o ograniczonym pokryciu pro-
gnozami przez analityków, takich jak rynki wschodzące, m.in. w Polsce. Podczas gdy analitycy finan-
sowi szeroko prognozują wyniki finansowe spółek na rozwiniętych rynkach, takich jak USA, jedynie 
niewielka część firm (około 20%) cieszy się podobnym zainteresowaniem w Polsce. Istnieje obszerna  
literatura poświęcona prognozowaniu zysków na akcję, głównie w USA, choć wyniki tych badań są 
zróżnicowane. W artykule oceniono dokładność prognoz generowanych przez szeroką gamę zmiennych 
objaśniających, w tym zmienne księgowe, rynkowe i makroekonomiczne, wykorzystując uczenie ma-
szynowe oparte na drzewach decyzyjnych ze wzmocnieniem gradientowym, wielowarstwowych sieciach 
perceptronowych i sieciach konwolucyjnych, w porównaniu z sezonowym modelem spaceru losowego. 
Modele te zastosowano w odniesieniu do danych EPS spółek notowanych na Giełdzie Papierów Warto-
ściowych w latach 2008–2019. W zastosowanych metodach wielowymiarowych wykorzystano komplek-
sowy zestaw 1598 zmiennych objaśniających, obejmujących specyficzne dla spółki wskaźniki finansowe 
i rynkowe wraz ze wskaźnikami makroekonomicznymi. Model sezonowego błądzenia losowego wyka-
zał najniższy błąd mierzony za pomocą średniego bezwzględnego błędu arcus tangensa (MAAPE), cze-
go wyniki potwierdzono testami statystycznymi. Liczne kontrole stabilności wyników, obejmujące róż-
ne ramy czasowe i wskaźniki błędów, potwierdzają ten wynik. Dominacja modelu uproszczonego może 
wynikać z tendencji do nadmiernego dopasowania modeli złożonych oraz stosunkowo prostej dynami-
ki obserwowanej w polskich spółkach giełdowych.

Słowa kluczowe: zysk na akcję, błądzenie losowe, drzewo decyzyjne ze wzmacnianiem gradientowym, 
wielowarstwowa sieć perceptronów, sieć konwolucyjna, Giełda Papierów Wartościowych w Warszawie




