
Bank i  Kredyt  54(6) , 2023, 651-672

Can exponential smoothing do better than seasonal 
random walk for earnings per share forecasting  

in Poland?

Wojciech Kuryłek*

Submitted: 7 July 2023.  Accepted: 12 September 2023. 

Abstract
The accurate prediction of listed companies’ earnings plays a critical role in successful investing. This 
piece of research contrasts estimation errors of the seasonal random walk model and exponential 
smoothing models employed in the earnings per share (EPS) data for Polish listed businesses from 
the timespan between 2008–2009. The models are compared using the mean arctangent absolute 
percentage error (MAAPE) metric. The best model across all quarters and years is the seasonal random 
walk (SRW) model, when contrasted with the other models studied regardless of the analysed time 
spans and error metrics. Contrary to the results obtained from the US market, the more intricate 
exponential smoothing model, comprising a seasonal and a trend component, does not suitably explain 
the behaviour of Polish companies. This could be attributable to the simpler demeanour of the Polish 
market and the absence of a trend in the EPS data.
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1. Introduction

EPS forecasts are vital because they provide useful numerical information about a firm’s prospects. 
They disclose information about the future market value of securities and set expectations in auditing. 
The motivation for this study was an article by Brandon, Jarrett and Khumawala (2007) in which the 
authors showed the usefulness of the quite old-fashioned Holt-Winter (HW) model in predicting EPS 
for a sample of US firms over a 20-year horizon. For short-term forecasting, the HW model provided 
relatively accurate forecasts compared to other methods. According to the authors, the model was to 
be a cost-effective alternative to more time-consuming and expensive techniques. The Holt-Winters 
exponentially weighted average forecast methodology was first described in the paper by Holt 
(1957, 2004) and Winters (1960), and since then it has been widely used. Moreover, these findings 
were confirmed in another paper by Brandon, Jarrett and Khumawala (2008). In this paper, the 
authors tested the random walk, Holt-Winters, and regression based on economic indicators models.  
The results indicated that the HW model outperformed other models. Similar conclusions were made 
by Jarret (2008). It was found that no one procedure was considered superior to the others in all aspects, 
but that exponential smoothing models proved to be the most accurate and better than individual 
autoregressive integrated moving average (ARIMA) models. Interestingly, the above findings contradict 
well-documented earlier economic literature (Ball, Watts 1972; Johnson, Schmitt 1974; Buckmaster 
1976; Ruland 1980; Brandon, Jarrett, Khumawala 1983). According to these many articles, the naïve 
random walk process outperformed more sophisticated exponential smoothing techniques for annual 
EPS data. There is a lack of literature referring to quarterly data in this respect. Hence, this article 
fills this gap. The studies that use quarterly data focus mainly on the methodology developed by Box 
and Jenkins (1976). The autoregressive integrated moving average models (ARIMA) invented by them 
were many times examined and compared with naïve random walk class of models (Ball, Watts 1972;  
Watts 1975; Griffin 1977; Foster 1977; Brown, Rozeff 1977, 1979). In some articles, it was argued that 
the naïve model provided the best results and more advanced mechanical models were not able to beat  
the naïve ones, whereas in others conclusions were different. But in the late 1970s, a consensus arose 
among researchers that ARIMA-type models were the best (Lorek 1979; Bathke, Lorek 1984). This 
changed in the late 1980s along with the opinion that forecasts provided by financial analysts were 
better than those made by time series models (Brown et al. 1987). This approach prevailed till the most 
recent years when the superiority of analysts over time series was questioned (Pagach, Warr 2020). 
For the Polish market, a study was made by Kuryłek (2023). He compared forecast errors of different 
univariate time series models, including various naïve random walk models as well as ARIMA-type 
models, and found that the best model was the seasonal random walk (SRW) model across all analysed 
quarters. It can be easily noted that all the above-mentioned papers except one are focused on the 
US stock market. Furthermore, the above research is restricted only to annual data. Hence, there is  
a need to also test the relevance of the exponential smoothing model for other markets using quarterly 
data. In the US the application of exponential smoothing models to EPS forecasting has been explored 
since the early 1970s. The usefulness of the exponential smoothing model with a trend and a seasonal 
component (the Holt-Winter model) was pointed out by Brandon in 2007. This model provided accurate 
forecasts in comparison to other methods used and was likely to be a cost-effective alternative to more 
time-consuming and expensive techniques. These findings were confirmed in other papers by Brandon, 
Jarrett and Khumawala (2008) and by Jarret (2008). 
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In this study, the relative accuracy of the three exponential smoothing methods and the seasonal 
random walk method are compared. These models are applied to 267 Polish-listed companies 
using quarterly EPS numbers. The examined period lasts from the financial crisis of 2008–2009 till  
the pandemic shock of 2020. The years 2017–2019 are used for forecast testing purposes. The sample  
is the same as in the study by Kuryłek (2023). 

Rather than using the standard mean absolute percentage error (MAPE) metric, which exhibits 
explosive values when the denominator is small (i.e. when actual earnings are close to zero), the mean 
arctangent absolute percentage error (MAAPE) was calculated and utilized (Kim, Kim 2016).

Summarizing,  the objective of this article is three-fold. The first is to find out whether the last 
made conclusions of exponential smoothing superiority are also valid for the Polish market, for the 
most recent period of stable market behaviour, i.e. for the years 2010–2019. The second is to examine 
the above relevance using quarterly data, because all existing studies were based on annual numbers. 
The third is to modify in analysis the widely used MAPE metric to deal with situations where actual 
profits are close to zero, i.e. use the mean arctangent absolute percentage error (MAAPE) as an error 
metric. Additionally, a wide range of analysed time spans, error metrics as well as different statistical 
tests were applied to strengthen the conclusions.

2. Literature review

The application of exponential smoothing in economics was first suggested in the statistical literature 
by Robert Goodell Brown in 1956, where he focused on using this technique in the prediction of 
demand. Then, his approach was extended to the Holt-Winters exponentially weighted average 
forecast methodology, which was first described in the papers by Holt (1957, 2004) and Winters 
(1960), both in terms of its concepts and its first computer implementation. The original motivation 
for the development of the methodology by Holt was the widespread need for a feasible technique 
that could be applied to the forecasting of sales on a product-by-product basis. Once introduced, the 
method has come to be widely applied as a practical technique. An extensive theoretical approach was 
then presented in the paper by Brown, D’Esopo and Meyer (1961). Higher orders of smoothing were 
defined and the procedures of initial values estimation as well as smoothing constants were described. 
More studies were conducted on the use of exponential smoothing to forecast demand. Groff (1973) 
compared the short-range forecasting effectiveness of exponentially smoothed and selected Box-Jenkins 
models for sixty-three monthly sales series. Among verified exponential smoothing models were 
Winters’ three-parameter model and a single-parameter model. The forecasting errors of the best of the 
Box-Jenkins models were found approximately equal to or greater than the errors of the corresponding 
exponentially smoothed models. The general usefulness of exponential smoothing methods was 
suggested in the book by Granger and Newbold (1977). The authors considered exponential smoothing 
models to be the best predictors for short-term time series. They also described a procedure for initial 
values and smoothing parameters’ estimation. This was confirmed in later research. For instance, in 
the study by Makridakis, Hibon and Moser (1979), the authors used 111 time series to examine the 
accuracy of various forecasting methods, particularly time-series methods. The study showed that 
simpler methods like Holt-Winters performed well in comparison to the more complex and statistically 
sophisticated ARMA models concerning the mean absolute percentage error (MAPE) metric.
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The issue of Earnings Per Share (EPS) forecasting had been investigated in the literature since the 
late 1960s, mostly for US companies. Various models were examined, including naïve random walk 
class of models as well as autoregressive integrated moving average (ARIMA) type models (Ball, Watts 
1972; Watts 1975; Griffin 1977; Foster 1977; Brown, Rozeff 1977, 1979). The results of these studies 
were ambiguous – in some works, it was argued that the naïve model yielded the best results and 
more advanced mechanical models were not able to beat the naïve ones, whereas in others different 
conclusions were drawn. However, a consensus formed among researchers that ARIMA-type models 
performed the best (Lorek 1979; Bathke, Lorek 1984). This trend in opinions lasted until the late 1980s, 
when the widespread consensus that forecasts provided by financial analysts were better than those 
made by time series models was formed (Brown et al. 1987). This opinion prevailed till the most recent 
years when the superiority of analysts over time series was questioned again. In their study, Bradshaw 
et al. (2012) undertook a fresh examination of the commonly held belief that analysts’ EPS forecasts 
outperform random walk (RW) time-series forecasts. Surprisingly, their findings revealed that basic 
RW forecasts exhibit greater accuracy compared to analysts’ forecasts when considering longer time 
horizons, smaller or younger firms, and situations where analysts predict negative or substantial changes 
in EPS. Pagach and Warr’s (2020) findings validated that in a significant proportion of cases (around 
40%), ARIMA time-series forecasts of quarterly EPS were either on par with or more precise than the 
consensus analysts’ forecasts. Additionally, the degree of time-series superiority grew for longer forecast 
horizons, intensified as firm size decreased, as in the previous research, and became more pronounced 
for high-technology firms. Similarly, Gaio et al. (2021) suggested the forecasting superiority of the 
random walk model when compared to the market analysts’ forecasts in Brazil. Moreover, Bansal, 
Nasseh and Strauss (2015) demonstrated that numerous financial and economic variables, including 
the price-earnings ratio, dividend yield, and Treasury bill rate, did not effectively predict EPS in out- 
-of-sample scenarios when compared to a basic autoregressive model. Conversely, the authors employed 
a combination forecast method that integrated both firm-specific and macroeconomic variables and 
observed significant improvement in predictive accuracy compared to the autoregressive benchmark. 

The most recent part of the research is focused on the application of artificial neural networks 
to earnings per share forecasting. It was found by Cao and Parry (2009) that the univariate neural 
network model significantly outperformed four alternative univariate models examined in prior 
research. In another article from the same year Cao and Gan (2009) used neural network models to 
forecast earnings per share (EPS) of Chinese listed companies. They showed that the neural network 
model with weights estimated with the genetic algorithm outperformed the neural network with 
weights estimated with the backpropagation. Ahmadpour, Etemadi and Moshashaei (2015) examined 
EPS forecasting using a multi-layer perceptron (MLP) neural network and rule extraction from neural 
network by genetic algorithm technique and showed that this rule was significantly more accurate 
than the MLP model. Elend et al. (2020) compared long-term short-term memory (LSTM) networks to 
temporal convolution networks (TCNs) in the prediction of future EPS. For a broad sample of US firms, 
they found that both LSTMs outperformed the naïve persistent model with up to 30.0% more accurate 
predictions, while TCNs achieved an improvement of 30.8%. Both types of networks were at least as 
accurate as analysts and exceed them by up to 12.2% (LSTM) and 13.2% respectively. 

For the Polish market, a study was made by Kuryłek (2023). The author compared forecast errors of 
different univariate time series models including various naïve random walk models as well as ARIMA-
-type models. He applied them to the EPS data for Polish companies from the period between the last 
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financial crisis of 2008–2009 and the pandemic shock of 2020. The best model was the seasonal random 
walk (SRW) model across all quarters, which described quite well the behaviour of the Polish market 
compared to other analysed models.

The exponential smoothing methods were also applied for EPS forecasting. The research by Elton 
and Gruber (1972) examined the accuracy of the EPS forecasts produced by nine mechanical models, 
including exponential smoothing ones. They found that the additive exponential smoothing with 
no trend dominated other models. Additionally, it turned out in their work that the differences in 
forecast accuracy of mechanical models and security analysts’ forecasts were not significant. Using 
exponential smoothing techniques, other scientists examined whether the underlying EPS-generating 
process might have a martingale or sub-martingale nature. In the paper by Ball and Watts (1972), the 
authors used exponential smoothing as a primary method for assessing whether an underlying EPS 
process is a martingale or sub-martingale. They looked at a smoothing constant and found it to be 
either equal to one or slightly lower than one. Hence they concluded that the EPS time series must be 
a martingale type. Johnson and Schmitt (1974) tested various mechanical models for EPS forecasting, 
including naïve random walk, moving average model, linear projection model, single double and triple 
exponential smoothing models, and the accuracy of their forecasts was calculated. The naïve model 
gave the best results and even more complex mechanical models were not able to beat the naïve one. 
This work was extended by Salamon and Smith (1977) using a similar framework based on exponential 
smoothing. They showed that selection bias in the study conducted by Ball and Watts caused them 
to overestimate the instability in the EPS time series. They also claimed that there was a diversity in 
time series characteristics of the EPS sequence of individual firms. In the following research Brooks 
and Buckmaster (1976) applied single, double, and triple exponential smoothing models for different 
strata of earnings time series. The best-smoothing constant for each of those three models was then 
determined for each stratum. It occurred that for most of the strata, the best smoothing model was of 
order one with a smoothing constant equal to one, which indicated that income time series normally 
followed a martingale or similar process. However, for the outer stratum, the best model was the model 
of order two with a smoothing constant of less than one which indicated that these time series didn’t 
follow a martingale process. The authors also suggested that it indicated that income tended to revert 
to previous levels in the period subsequent to a substantial deviation from an operationally defined 
norm. Brandon and Jarret (1979) tested seven extrapolative forecasting models including the random 
walk model, ARIMA models with the autocorrelation part and exponentially smoothing models with 
optimal linear correction technique developed by Theil as well as the Bayesian revision procedure. 
The results indicated that the optimal correction technique was superior to not correcting for past 
errors. In the study of Chant (1980) there were employed forecasting models utilizing economic leading 
indicators to examine the predictability of annual EPS behaviour. The lead indicators were the growth 
of money supply, stock market index, and bank loan growth. These models were compared to three 
univariate time series models, i.e. an average growth model, an exponential smoothing model, and 
a random walk model (RW). The author found that the errors for the models relying on economic 
leading variables were smaller than pure time series models. The results indicated the existence of  
a predictable relationship between some economic leading indicators and EPS numbers. Ruland (1980) 
evaluated the relative ability of various extrapolative models to predict future annual earnings, one 
of which was an exponential smoothing model. A comparison of alternative models revealed that the 
simple martingale dominated the other models tested. The results showed that the simple martingale 
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model outperformed the other models except in the case of large prior period earnings changes and 
in one of the ten specific industries selected for examination. Brandon, Jarrett and Khumawala (1983) 
tested various models, including the random walk model and three models of simple exponential 
smoothing. The results of this study indicated that some accounting time series were random walks, 
which was consistent with many previous studies. However, exponential smoothing yielded similar 
results in terms of the relative mean absolute error metric. Conroy and Harris (1987) examined the 
primary forecasting advantages of analysts over time series methods, including random walk, single, 
double, and triple exponential smoothing, and the simple average of the last 5 years of EPS numbers. 
However, the authors concluded that, on average, the primary forecasting advantages of analysts over 
time series methods appeared to occur over short forecast horizons (less than one year). Moreover, this 
superiority declines steadily as the forecast horizon increases. Neither analysts nor other time series 
methods substantially outperformed a random walk prediction when the forecasts were made at the 
beginning of the year. It is worth mentioning that all the above studies were based on annual data.

In 2007 Brandon, Jarrett and Khumawala pointed out the usefulness of the Holt-Winter (HW) 
model in predicting EPS for a random sample of firms in the US over a 20-year horizon. They used the 
mean absolute percentage error (MAPE) measure. For short-term forecasting, the HW model provided 
relatively accurate forecasts in comparison to other methods used. The HW model was likely to be 
a cost-effective alternative to more time-consuming and expensive techniques. These findings were 
confirmed in another paper by Brandon, Jarrett and Khumawala (2008), where the authors tested the 
random walk, Holt-Winters, and regression based on economic indicators models. As an error metric, 
they used the MAPE error metric. The results indicated that the HW model outperformed other 
models. Similar conclusions were made by Jarret (2008). The four tested models were: (1) the Holt- 
-Winters multiplicative exponential smoothing model, (2) the univariate Box-Jenkins model, (3) linear 
autoregression of data seasonally adjusted by the Census II–XII method, and (4) linear autoregression 
of the data seasonally adjusted by the X11-ARIMA method. No one procedure was considered superior 
to the others in all aspects, but according to the MAPE measure, exponential smoothing models proved 
to be the most accurate and better than individual Box-Jenkins models.

3. Data and methodology

3.1. Data

The Polish stock market is one of the deepest among those that joined the European Union after 2004, 
with a capitalization of USD 197 billion and 774 listed companies at the end of 2021. Its stocks are not 
as widely covered by financial analysts as those of the US or Western Europe, with only around 20% of 
the 711 listed companies being covered in 2019. I focus on the earnings per share (EPS) data series. Data 
sourcing was conducted through EquityRT, a financial analysis platform.1 Consequently, I analysed 
EPS firms listed on the Warsaw Stock Exchange, spanning from Q1 2010 to Q4 2019, i.e. between 
two structural shifts, the first of which being the financial crisis of 2008–2009, and the second being  
the onset of COVID-19 in 2020. The respective time series were analysed on a level scale.

1 �  Provided by a Turkish company RASYONET.
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For forecasting purposes, the data for Q1 2010–Q4 2018 (36 quarters) were used for model 
estimations, with data from Q1 2019–Q4 2019 acting as a validation sample for accuracy testing 
of 1 quarter-ahead, 2 quarters-ahead, 3 quarters-ahead, and 4 quarters-ahead forecasts. This led to 
a survivorship bias – due to the need for a long enough series of data – though comparability of 
results was assured. But this problem is inevitable in the selection of all sufficiently long time series. 
Alternatively, expanding window approaches were tested using the years 2017 and 2018 as validation 
samples. After applying a full-time window coverage and excluding the impact of splits and reverse 
splits and removing them from the sample, 267 companies remained in the sample. This included those 
affected by government regulations, such as utilities and financial sectors, as it was hard to determine 
the extent to which government regulations shaped businesses’ income.

3.2. Methodology and research

The models

Denote as Qt realization of EPS in quarter t. The following four time series models, estimated for each 
individual company separately, are analysed in this paper:

1. The seasonal random walk model (SRW), can be described as:
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where εt are IID and 
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, so the model doesn’t need any estimation of parameters to make  
the forecasts because the value delayed by 4 quarters is the forecast. To estimate the variance  
of the disturbance term:
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 the following calculations have to be made:  
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 and et  are realizations of εt variable.

2. The Brown model – Simple Exponential Smoothing (SES)
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where lt  represents a level component.

Hence the forecast can be expressed as 
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. The model was initially proposed by Brown 
(1956). The unknown parameters – initial value and smoothing constant l0, α are estimated by 
minimizing the sum of squared errors. 
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3. The Holt model – Double Exponential Smoothing (DES)

	 The additive version of the model is the following (a similar multiplicative version of the model can 
be easily derived):
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(3)

where lt, bt are level and trend components respectively. 

Thus the forecast can be denoted as
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. This model was developed by Holt (1957).  
The parameters 
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 are estimated by minimizing the sum of squared errors. 

4. The Holt-Winters model – Triple Exponential Smoothing (TES)

	 The additive version of the model is the following (a similar multiplicative version of the model can 
be easily derived):
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where 
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 are level, trend, and seasonal components (with a period T) respectively. 

The frequency of the seasonality, i.e. the number of seasons in a year, is the T parameter, 
which is equal to 4, since quarterly data are used. Thus the forecast can be formulated as  
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. This approach was published by Winters (1957). The parameters 
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 are estimated by minimizing the sum of squared errors.

The forecasts were calculated with the use of the Statsmodels library in Python computer 
programming language.

Mean arctangent absolute percentage error (MAAPE)

Let us denote 
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 as the actual earnings per share (EPS) for the 1-st,…, 4-th quarter of 2019 
for a given firm i. 
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 are the forecasts of this variable in the corresponding periods (i.e.  
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, where t = 37,…, 40 for i-th company). For any firm i, during the j-th quarter of 2019, the absolute 
percentage error (APE) of such forecasts can be expressed as follows:
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(5)



Can exponential smoothing do better than seasonal random walk... 659

Nevertheless, APE is accompanied by a major setback: when actual values are close to or equal to 
zero, then it produces infinite or undefined results – a common problem during earnings forecasts. 
Additionally, if the actual values happen to be very small (usually lower than one), this would then 
generate extreme percentage errors (outliers). Finally, zero actual values will lead to infinite APEs.  
To fix this dilemma, Kim and Kim (2016) proposed the arctangent absolute percentage error as a new 
approach in the literature.
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(6)

This is due to arctan being a function that maps any value between the range 
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Consequently, the mean arctangent absolute percentage error (MAAPE) for the i-th firm can be 

formulated as follows:

				       

 
4t t tQ Q ε−= +

 ( )2~ 0,t Nε σ

 
4

ˆ
t tQ Q −=

 
4t t tQ Qε −= −

 ( )2

2

1 1
ˆ

T
t t

t

e e
T

σ
=

−
=

−∑

 

1

T
t

t
t

e
e T=

=∑

 ( ) 1
.

.

.
. .

.

.
t t tl Q lα α −= + −

 
1

ˆ
t h tQ l+ −=

 ( ) ( )
( ) ( )

1 1

1 1

t t t t

t t t t

l Q l b
b l l b

α α

β β
− −

− −

⎧ = + − +⎪
⎨
⎪⎩ = − + −

 
1

ˆ
t h tQ l hβ+ −= +

 
0 0, , ,l b α β

 ( ) ( ) ( )
( ) ( )
( ) ( )

 1 1

1 1

 

t t t T t t

t t t t

t t t t t T

l Q s l b
b l l b
s Q l b s

α α

β β

γ γ

− − −

− −

−

⎧ = − + − +
⎪

= − + −⎨
⎪ = − − + −⎩

 
  , ,t t t mod Tl b s

1   
ˆ

t h t t h mod TQ l h sβ+ − += + +

 
0 0 0 1, , , , , , , Tα β γ −…l b s s

1 4, ,i iA A…

1 4, ,i iF F…
i i
j ji

j i
j

A F
APE

A
−

=

i i
j ji

j i
j

A F
AAPE arctan

A

⎛ ⎞−
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

 [ ],−∞ +∞

 [ ]/ 2, / 2π π−

 4 4

1 1

1 1
4 4

i i
j ji i

j i
j j j

A F
MAAPE AAPE arctan

A= =

⎛ ⎞−
= = ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∑

 

1 1

1 1 i iI I
j ji

j j i
i i j

A F
MAAPE AAPE arctan

I I A= =

⎛ ⎞−
= = ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∑
 4 4

1 1 1 1

1 1 1
4 4

i iI I
j ji

j i
i j i j j

A F
MAAPE MAAPE MAAPE arctan

I I A= = = =

⎛ ⎞−
= = = ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∑ ∑∑

1

1

1
1

1

1

. .
..

.

.

.

 		         (7)
	

In addition, the mean arctangent absolute percentage error (MAAPE) for the j-th quarter among 
all I companies in the sample can be represented as:
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Therefore, the mean arctangent absolute percentage error (MAAPE) for all 4 quarters and among 
all I companies in the sample can be summarized by the following formula:
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Forecasts are generated through the described models and, for each model m, MAAPE(m)1,..., 
MAAPE(m)4, along with MAAPE(m) are then calculated. 

The average rank of error	

For every firm-quarter combination, the absolute percentage errors of the indicated models are sorted. 
The model with the least amount of error is given a rank of 1, and the one with the highest error gets 
a score of 4. Then, we calculate the average rank of each model across all firms for forecasts from the 
first to the fourth quarter of 2019, as well as the average rank across four quarters and companies 
combined. AAPE(m)i

j represents the arctangent absolute percentage error of the forecast for an i-th 
company in the j-th quarter of 2019 generated by the m-th model with R(m)i

j  being its rank (where  
m = 1 to 4). Therefore, we can express the average rank of the m-th model and i-th company across all 
four quarters as follows:
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(10)

The average rank of the m-th model and the j-th quarter for all companies represented in our 
sample can be indicated as follows:
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The average rank of the m-th model for all I companies in the sample, over all four quarters, can 
be expressed as such:
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For the models described, forecasts are made and the averages 
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are calculated for the m-th model.

The equality of means tests

To test a statistical significate difference in mean arctangent absolute percentage errors (MAAPEs) 
across several means, three statistical tests have been used: the one-way ANOVA test, the Alexander- 
-Govern test, and the Kruskal-Wallis test. These tests are described below.

The one-way ANOVA test
To test whether the mean of errors denoted by MAAPEs are statistically different the one-way 

ANOVA test (Lowry 2014) is used, which is widely applied for testing the equality of means. However, 
the test has important assumptions that must be satisfied for the associated p-value to be valid, 
including the independence of variables generating observations in the sample, the homoscedasticity 
of their variances in different groups, and their normality of distributions. 
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The Alexander-Govern test
Unlike the one-way ANOVA test, this test does not assume homoscedasticity, instead relaxing  

the assumption of equal variances (Alexander, Govern 1994). The rest of the assumptions, including  
the normality of distribution, hold.
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(14)

The Kruskal-Wallis test
After that, a Kruskal-Wallis one-way H-test (Corder, Foreman 2009) is conducted. This is  

a nonparametric test that bypasses the issues surrounding the potential normality of the errors.  
The relative closeness of the average ranks of the 4 models implies that the null hypothesis of median 
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 AAPE’s equality cannot be rejected. The calculation is done for each respective quarter as well as for 
all forecast quarters, resulting in Kruskal-Wallis H statistics with the respective p-values.
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It is also worth mentioning that in the previous research, the Alexander-Govern test and the 
Kruskal-Wallis test were not considered.

The Wilcoxon test
Lastly, the paired comparison of forecast errors is completed with the help of a nonparametric 

two-sided Wilcoxon test (Wilcoxon 1945) to assess the similar median errors of diverse models. For two 
matched samples, it is a paired difference test. It is essential to note that this test does not demand 
particular assumptions about a probability distribution, except for the symmetricity of the difference in 
scores and independence of variables that generate observations. An excellent explanation of the use of 
the Wilcoxon test in the context of verification if errors produced by various EPS models are statistically 
different was provided by Ruland (1980). Separate tables for every quarter from one to four, as well as 
all quarters combined, are produced in which the p-values of the Wilcoxon statistic are located above 
the diagonal for all model pairs.

		

 		   

 
( ) ( )

4

1

1
4

i i

j
j

R m R m
=

= ∑

( ) ( )
1

1 I
i

j j
i

R m R m
I =

= ∑

( ) ( ) ( ) ( )
4

1 1 1

1 1 1
4 4

I I
i i

j j
i j i

R m R m R m R m
I I= = =

= = =∑ ∑ ∑

 ( ) ( )1 4
, ,R m R m…

 :      4    0H means  of AAPEs of all models are the same

 :      4     0H medians of AAPEs of all models are the same

 :           0H medians of AAPEs of a pair of models are the same 		                     (16)

The rejection of the null hypothesis of respective tests happened when their p-values were less  
than the accepted significance level of 0.05, the concept of which is widely applied, among others, by 
Ruland (1980). The above test statistics and their p-values were calculated using the Scipy library in 
Python programming language.

If it emerged from the tests that the mean (median) errors of a particular model type were lower 
and statistically different than other models it would be inferred as a superiority of this model class 
over the others.

4. Results

4.1. Empirical findings

The seasonal random walk (SRW) model, presented in Table 1, outperforms all other models in every 
quarter, both in terms of its ranking and its overall performance. The double exponential smoothing 
(DES) model ranks the lowest among all models and performs the worst, while the triple exponential 
smoothing (TES) model only slightly outperforms it. The simple exponential smoothing model (SES) 
performs worse than the best model and better than other exponential smoothing models in all 
analysed time spans. 

Table 1 presents the results of several equality of means tests, including the one-way ANOVA test 
(F statistic), the Alexander-Govern test (AG statistic), and the Kruskal-Wallis test (H statistics). All those 
tests confirm in the 1st and 3rd quarters and also for all the joint quarters, that the null hypothesis – 
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that the means (medians in case of the last test) of arctangent absolute percentage errors (AAPEs) of 
all 4 models are statistically equal – can be rejected. Interestingly, in the 2nd and 4th quarters, all tests 
are not able to reject this hypothesis and the respective p-values of these test statistics are far above 
any accepted significance levels. 

To assess whether the errors of the best model differ statistically from the results of the other models, 
the Wilcoxon nonparametric test was used to compare the medians of the arctangent absolute percentage 
errors (AAPEs) of all model pairs. As shown in Table 2, the results indicate that the seasonal random walk 
(SRW) model produces a statistically significant lower median of errors in the 1st and 3rd quarters than 
other models, which is further confirmed in Table 3 for all joint quarters. This finding is consistent with 
the above-mentioned outcomes of equality of several means tests. However, in the 2nd and 4th quarters, 
the hypothesis about a statistically significant difference in medians between the seasonal random walk 
(SRW) and the simple exponential smoothing model (SES) cannot be rejected. It explains why the equality 
of several means tests can not reject the null hypothesis in these quarters. This observation paves the way 
for the conclusion that the seasonal random walk model  (SRW) performs the best of all tested models 
but statistically may not differ in specific quarters from the results of another basic model – the simple 
exponential smoothing model (SES). It is worth mentioning that both the double exponential smoothing 
model (DES) and the triple exponential smoothing model (TES) provide statistically the same outcome  
in all analysed time spans and perform much worse than the best model.

The above findings confirm the superiority of the seasonal random walk model (SRW) for EPS 
forecasting in Poland, which sometimes can be forecasted using another very simple and old technique 
– the simple exponential smoothing (SES). The much worse and simultaneously similar performance 
of more sophisticated exponential smoothing models can be explained by the absence of a trend in the 
Polish market, which is present in both models. This might coincide with the horizontal performance 
of the stock market index WIG during the analysed period. 

The conclusion made by Brandon, Jarrett and Khumawala (2007) and Jarret (2008) about the 
superiority of the Holt-Winters model (i.e. the triple exponential smoothing model) in comparison to 
other methods used for the US market does not hold for Poland, where this model performs as the one 
of the worst. In Poland, the most efficient is the seasonal random walk model, which sometimes gives 
an outcome comparable to the simple exponential smoothing model. This might be explained either by 
the relative simplicity of the Polish stock market compared to the US one or the absence of trends in the 
Polish EPS data in the examined period. Together with the results obtained by Kuryłek (2023) it proves 
that no time series models from either ARIMA or exponential smoothing families can do a better job 
than the simple random walk model. Hence it has a practical consequence, that the application to EPS 
forecasting for investment purposes of any of the above-mentioned more sophisticated techniques than 
the ordinary seasonal random walk one makes no sense in Poland. Moreover, assuming that the EPS 
process is driven by the seasonal random walk, and knowing that the market price of stock comes from 
a multiplication of the P/E multiple by EPS, it could be inferred that stock prices also behave at least 
as randomly as EPS. The forecast of the seasonal random walk is simply a value from the respective 
quarter of the previous year. Thus, it might imply that for predicting future prices the P/E multiple 
is more important than the next year’s earnings of companies. It is consistent with economic theory, 
saying that this multiple refers more to the expected growth of future earnings, the level of future 
interest rates, and the market premium which reflects the risk appetite of investors, as the EPS forecast, 
which refers only to the near future earnings. 
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4.2. Robustness checks

The robustness checks were calculated with respect to time but also with respect to other popular error 
metrics.

Table 4 demonstrates that the seasonal random walk model (SRW) obtained the least MAAPE error 
metric and the lowest rank in 2019, 2018, and 2017. The statistically significant difference in the results 
of different models is corroborated by the low p-values of all statistical tests carried out: the one-way 
ANOVA test, the Alexander-Govern test, and the Kruskal-Wallis test. Additionally, the Wilcoxon test 
was applied to all model pairs with the seasonal random walk model, and the p-values for each year 
are listed in Table 5. The seasonal random walk model (SRW) achieved statistically better results than 
all the other surveyed exponential smoothing models in each respective year. Therefore, the seasonal 
random walk model’s superiority appears consistent over time.

In Table 6 the performance of the analysed models was investigated with respect to other error 
metrics like, the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) for all 
combined quarters in 2019. The above measures were adjusted to the CPI inflation since a future 
error must have in nominal term the same present value as the current one. Again, it appeared that  
the seasonal random walk gave the lowest errors measured either in terms of RMSE or MAE. However, 
the statistically significant difference between the results of the various techniques was not confirmed 
by the one-way ANOVA test, the Alexander-Govern test, and the Kruskal-Wallis test. P-values of these 
test statistics were far above any sensible significance level. This might be explained by the result of 
Table 7, which indicated that the seasonal random walk (SRW) model made forecasts both in term  
of RMSE and MAE not statistically different from the simple exponential smoothing (SES) model and 
simultaneously the outcomes of the double exponential smoothing (DES) and the triple exponential 
smoothing models were also not significantly different. Nevertheless, the seasonal random walk model 
gave the lowest forecast error using the other error measures, but that was not statistically different 
from the prediction of the simplest of explanation smoothing models.

5. Conclusions

The paper examines the forecasting characteristics of four univariate time-series models: the seasonal 
random walk (SRW), simple, double, and triple exponential smoothing models. When applied to the 
quarterly Earnings per Share (EPS) of 267 Polish companies from 2010 to 2019, the SRW model obtained 
the lowest rank and described the behaviour of the Polish market comparatively better than the other 
models. This is further evidenced by the one-way ANOVA, Alexander-Govern, Kruskal-Wallis, and 
Wilcoxon tests. However, this contradicts Brandon et al. (2007) and Jarret’s (2008) findings that the 
triple exponential smoothing model is the most appropriate for the US market, as in the case of Poland 
it was not. This can be attributed to the absence of a trend in the EPS data in Poland, which is consistent 
with the horizontal nature of the WIG stock market index throughout the analysed period. It could be 
also due to the relative simplicity of the Polish stock market compared to the US. Additionally, the SRW 
model appeared to remain superior regardless of time and the other error measures like RMSE or MAE. 
It has a practical consequence that the application to EPS forecasting for investment purposes of any 
of the above-mentioned more sophisticated techniques than the ordinary seasonal random walk one 
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makes no sense in Poland. However, relying on seasonal random walk in EPS modelling implies that 
forecasted stock prices might behave in a very random way. Hence, the prediction of the P/E multiple 
could be more important than EPS prediction for forecasting future prices.   

It would be of interest in a future research agenda to ascertain whether more modern and newer 
time-series models with a basis in neural networks provide more accurate predictions compared to the 
naïve seasonal random walk model. Furthermore, the connection between forecasting efforts and firm 
size could also be considered. The business nature described by the sector in which a company operates 
can be a major factor when determining which model has the most accurate forecasting of earnings 
per share. Also, an effect of time series transformation making the EPS distribution more in line with  
a normal distribution could be investigated. There may be also a seasonal pattern identified by the 
SRW model, which could hint at possible investment plans. Such a strategy may challenge the “weak 
form” of the Efficient Market Hypothesis (EMH). Last, it would be interesting to compare the results  
of the best models with the forecasts made by professional market analysts. 
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Appendix

Table 1
Summary statistics on forecast errors and mean equality tests for 2019 quarters

Model
Quarters All quarters

Q1 
MAAPE

Q1 
Rank

Q2 
MAAPE

Q2 
Rank

Q3 
MAAPE

Q3 
Rank

Q4 
MAAPE

Q4 
Rank MAAPE Rank

SRW 0.66 2.08 0.70 2.32 0.65 2.19 0.74 2.42 0.69 2.25

SES 0.77 2.42 0.72 2.36 0.76 2.39 0.77 2.37 0.76 2.38

DES 0.83 2.84 0.77 2.64 0.83 2.76 0.80 2.61 0.81 2.71

TES 0.82 2.66 0.79 2.67 0.82 2.66 0.80 2.60 0.81 2.65

F statistics 7.33 1.80 7.61 1.34 6.96

F p-value 0.00 0.15 0.00 0.26 0.00

AG statistics 23.03 5.37 23.72 3.90 23.07

AG p-value 0.00 0.15 0.00 0.27 0.00

H statistics 21.52 5.11 21.26 4.09 16.12

H p-value 0.00 0.16 0.00 0.25 0.00

Table 2
P-values of paired Wilcoxon test of forecast errors in respective quarters of 2019

Q1 Q2

Model SES DES TES Model SES DES TES

SRW 0.00 0.00 0.00 SRW 0.41 0.02 0.00

SES 0.00 0.05 SES 0.01 0.00

DES 0.37 DES 0.70

Q1 Q4

Model SES DES TES Model SES DES TES

SRW 0.00 0.00 0.00 SRW 0.45 0.05 0.01

SES 0.00 0.02 SES 0.03 0.11

DES 0.48 DES 0.91
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Table 3
P-values of paired Wilcoxon test of forecast errors for all quarters of 2019

Model SES DES TES

SRW 0.00 0.00 0.00

SES 0.00 0.00

DES 0.42

Table 4
Summary statistics on forecast errors and mean equality tests for all quarters 2017–2019

Model
2017 2018 2019

MAAPE Rank MAAPE Rank MAAPE Rank

SRW 0.69 2.24 0.71 2.24 0.69 2.25

SES 0.75 2.37 0.78 2.46 0.76 2.38

DES 0.80 2.74 0.82 2.72 0.81 2.71

TES 0.80 2.65 0.80 2.58 0.81 2.65

F statistics 6.00 4.82 6.96

F p-value 0.00 0.00 0.00

AG statistics 19.70 15.80 23.07

AG p-value 0.00 0.00 0.00

H statistics 13.94 12.59 16.12

H p-value 0.00 0.01 0.00

Table 5
P-values of paired Wilcoxon test of forecast errors for all quarters 2017–2019 and SRW model

Year Model F BR BJ

2017 SRW 0.00 0.00 0.00

2018 SRW 0.00 0.00 0.00

2019 SRW 0.00 0.00 0.00
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Table 6
Summary statistics on forecast errors for RMSE and MAPE in all quarters 2019

Measure SRW SES DES TES F stat F  
p-val

AG 
stat

AG 
 p-val H stat H  

p-val

RMSE 0.94 1.14 1.22 1.17 0.21 0.89 1.21 0.75 4.29 0.23

MAE 0.70 0.94 1.02 0.95 0.34 0.80 2.25 0.52 5.91 0.12

Table 7
P-values of paired Wilcoxon test of forecast errors for RMSE and MAE in 2019

Model SES DES TES Model SES DES TES

RMSE MAE

SRW 0.22 0.00 0.04 SRW 0.10 0.00 0.00

SES 0.00 0.00 SES 0.00 0.00

DES 0.71 DES 0.59
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Czy wygładzanie wykładnicze może dawać lepsze wyniki niż 
błądzenie losowe w prognozowaniu zysków na jedną akcję  
w Polsce?

Streszczenie
Dokładna prognoza zysków spółek notowanych na giełdzie odgrywa kluczową rolę w pomyślnym 
inwestowaniu. Motywacją do tego badania był artykuł Brandona, Jarretta i Khumawala (2007), 
w którym autorzy wykazali przydatność dość staromodnego modelu wygładzania wykładniczego 
stworzonego przez Holta i Wintera do przewidywania zysków na jedną akcję (EPS) dla próby firm 
amerykańskich. W przypadku prognoz krótkoterminowych model ten zapewniał stosunkowo dokładne 
prognozy w porównaniu z innymi metodami. Według autorów model miał stanowić opłacalną 
alternatywę dla bardziej czasochłonnych i kosztownych technik. Wyniki te zostały potwierdzone  
w pracy Brandona i in. (2008) oraz przez Jarreta (2008). 

W niniejszym badaniu przeanalizowano jakość prognostyczną modelu sezonowego błądzenia 
losowego i różnych modeli wygładzania wykładniczego zastosowanych do danych zysków na jedną 
akcję (EPS) dla polskich spółek giełdowych ze stabilnego okresu między kryzysem finansowym  
2008–2009 a szokiem wywołanym pandemią (2020 r.). Zamiast korzystać ze standardowo 
wykorzystywanego średniego względnego błędu procentowego (MAPE), który wykazuje wartości 
niewspółmiernie duże, gdy mianownik jest mały (tj. gdy rzeczywiste zyski są bliskie zera), wykorzystano 
średni arcus-tangens względnego błędu procentowego – MAAPE (Kim, Kim 2016).

Niniejszy artykuł ma trzy cele. Pierwszym jest sprawdzenie, czy ostatnie wnioski o wyższości 
wygładzania wykładniczego są aktualne również dla rynku polskiego. Drugim jest zbadanie powyższej 
istotności przy użyciu danych kwartalnych, ponieważ wszystkie istniejące badania opierały się na 
danych rocznych. Trzeci polega na zmodyfikowaniu powszechnie stosowanej w analizie miary błędu 
prognozy (MAPE), aby poradzić sobie z kłopotliwymi sytuacjami. Modelem dającym we wszystkich 
kwartałach i latach najmniejsze błędy okazało się sezonowe błądzenie losowe (SRW), które na polskim 
rynku sprawdza się dość dobrze w porównaniu z bardziej skomplikowanymi modelami wygładzania 
wykładniczego. 

Statystyczną różnicę między prognozami tego modelu a prognozami innych modeli (jeśli 
przyjmiemy MAAPE jako miarę błędu prognozy) potwierdzają dodatkowo jednoczynnikowe testy 
ANOVA, testy Alexandra-Governa, Kruskala-Wallisa i Wilcoxona. Ponadto model SRW okazał się lepszy 
niezależnie od testowanego okresu prognostycznego czy pozostałych miar błędu prognozy, aczkolwiek 
nie był statystycznie istotnie różny od błędu najprostszego z modeli wygładzania wykładniczego. Jest 
to sprzeczne z wcześniejszymi ustaleniami dla rynku amerykańskiego. Można to wiązać z brakiem 
wyraźnego trendu w danych o EPS spółek giełdowych w Polsce, co jest zgodne z horyzontalnym 
zachowaniem indeksu giełdowego WIG w analizowanym okresie. Może to również wynikać ze 
względnej prostoty polskiego rynku akcji w porównaniu z rynkiem amerykańskim. Praktyczną 
konsekwencją tego jest to, że stosowanie do prognozowania EPS w celach inwestycyjnych którejkolwiek 
z wyżej wymienionych technik, bardziej wyrafinowanych niż zwykłe sezonowe błądzenie losowe, nie 
ma w Polsce sensu. Poleganie na sezonowym błądzeniu losowym w modelowaniu EPS oznacza jednak, 
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że ceny akcji mogą się zachowywać w bardzo losowy sposób. Przewidywanie mnożnika P/E może 
być zatem ważniejsze niż prognoza EPS dla prognozowania przyszłych cen, co jest ugruntowanym 
poglądem w teorii ekonomii.

Słowa kluczowe: zysk na jedną akcję, błądzenie losowe, wygładzanie wykładnicze, prognozowanie 
finansowe, Giełda Papierów Wartościowych




