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Abstract
The paper presents methods used at the National Bank of Poland

for yield curve estimation. A comparative analysis of

parsimonious and polynomial models is conducted and the

models evaluated according to several criteria. The results

indicate that B-spline models stabilized with a variable roughness

penalty (VRP) have best overall performance. 

A new approach to implementing the roughness penalty is

proposed. Instead of the commonly used continuous stabilizer a

modification of the difference penalty used by Eilers and Marx

(1996) is applied. A modified discrete stabilizer is compatible

with the continuous penalty function while facilitating analytical

solutions and reducing time of computation. 

Finally, yield curve estimates for Poland are presented and their

dynamics analyzed. A simple time-series based test is applied to

evaluate the influence of unexpected events on the bond market. 

Keywords: yield curve estimation, B-splines, curve smoothing,

market dynamics
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Streszczenie
Artyku∏ przedstawia metody stosowane w Narodowym Banku

Polskim do estymacji krzywych dochodowoÊci. Autor

przeprowadza analiz´ porównawczà modeli oszcz´dnych i

wielomianowych oraz ocenia modele na podstawie kilku

kryteriów. Wyniki wskazujà na najwy˝szà niezawodnoÊç modeli

B-splajnowych stabilizowanych za pomocà zmiennej sankcji

krzywizny (VRP).

Autor proponuje nowy sposób implementacji sankcji krzywizny.

Zamiast powszechnie u˝ywanego stabilizatora ciàg∏ego stosuje

modyfikacj´ stabilizatora ró˝nicowego wykorzystanego przez

Eilersa i Marxa (1996). W∏asnoÊci zmodyfikowanego stabilizatora

odpowiadajà ciàg∏ym funkcjom sankcji, a jego zaletà jest

u∏atwienie rozwiàzaƒ analitycznych i skrócenie czasu obliczeƒ.

W ostatniej cz´Êci artyku∏u autor prezentuje oszacowania

krzywej dochodowoÊci dla Polski oraz przeprowadza analiz´ ich

dynamiki. Do oceny wp∏ywu nieoczekiwanych zdarzeƒ na rynek

obligacji wykorzystany jest prosty test oparty na szeregach

czasowych.
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Introduction 

The purpose of this paper is to present methods used
at the National Bank of Poland for yield curve
estimation and discuss in more detail some related
issues. The topics include both a general overview of
the basic concepts as well as a detailed discussion of
some specific aspects of yield curve extraction and
analysis. The scope of the paper is therefore fairly
wide and can be attractive as much for a practitioner
familiar with the field, seeking concrete solutions to
some practical problems, as for a person with only
little prior knowledge of the topic.

The first part of the paper provides a brief
discussion of the most relevant aspects of yield curve
modelling. First, several basic models for extraction
of zero-coupon and forward rates from coupon
bearing instruments are presented. Two classes of
models are considered: parsimonious and polynomial
based models. The first group includes the
approaches developed by Nelson and Siegel (1987)
and Svensson (1994), the second – a standard
piecewise polynomial model by McCulloch (1971
and 1975) and its B-spline based versions by Fisher,
Nychka and Zervos (1994) with smoothing methods
put forward by Waggoner (1997) and Anderson,
Sleath (2001). Technical details and practical aspects
of model implementation are considered. Moreover,
based on yield curve estimates for the Polish bond
market a comparative analysis of the Svensson model
and B-spline VRP model is conducted. The criteria
for model evaluation are formulated and used to
choose the most reliable approach. 

A conclusion is drawn that the B-spline VRP
models show best overall performance. They have
virtually unlimited calibration possibilities and thus
enable adequate smoothness adjustment while offering
comparable or better goodness of fit than parsimonious
models. A potential weakness of the B-spline based
smoothed curves is considerable time expenditure for
computation. The problem intensifies for more
accurate models covering a wide range of maturities. It
is related mainly to the curve stabilizer whose
continuous form requires numerical integration over a
squared second derivative of the function used to
approximate the yield curve. Moreover, the yield curve
function itself has to be evaluated recursively, which
further extends the time of calculation. 

A way to overcome the problem of a
computationally demanding curve smoothing scheme
was proposed by Eilers and Marx (1996) who used a
discrete difference penalty instead of the continuous
stabilizer. The authors, however, applied only a single
scalar parameter to control the smoothness of the
entire curve thus giving up the flexibility of the
variable roughness penalty (VRP) approach. A

method of merging both approaches in one model has
so far not been discussed in much detail in the
literature. This paper seeks to fill this gap.

An extension to the model by Eilers and Marx is
proposed, which enables different level of smoothing
in each segment of the yield curve. The method
preserves virtually all advantages of the continuous
approach by Anderson and Sleath while signifcantly
simplifying notation and calculation. The result is a
simple, flexible yield curve extraction model with
relatively low computational requirements. 

Finally, the paper presents the VRP model based
yield curve estimates for Poland. An analysis of their
basic properties and dynamics is conducted and the
results discussed. A simple time-series based test is
proposed to evaluate the influence of unexpected events
and news releases on the bond market. The test proves
a useful tool for evaluating yield curve reaction when
data contain a considerable noise component and no
accurate measures of market expectations are available.
The behaviour of interest rates may be difficult to
explain when an undefined (but large) number of factors
translate into chaotic yield curve swings with no
reasonable economic interpretation. The test constitutes
a kind of a filter discriminating between meaningless
and meaningful yield curve movements. By comparing
the level of interest rates before and after an event
evaluated as (tested to be) statistically significant it is
possible to approximate the extent to which the event
was anticipated and a surprise component. The method
may be especially useful when market expectations are
not known and have to be estimated from prices of
financial instruments. 

The paper is organized into three main sections.
Section 1 contains a review of the basic parsimonious
and polynomial yield curve models. The B-spline
basis is introduced and applied to piecewise
polynomial models. A modification of the standard
smoothing mechanism for B-spline VRP models is
proposed and discussed. 

Section 2 presents results of the statistical
analysis and comparison of the Svensson model and
B-spline VRP models. 

In Section 3 the term structure and dynamics of
the bond market in Poland are analysed. A test for
significance of exogenous events on the bond market
is proposed and evaluated. 

Finally, results of the paper are summarized and
conclusions drawn.

1. Yield curve estimation

The main problem in yield curve analysis lies in the
fact that interest rates are often not directly
observable. This is the case for zero-coupon and
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forward interest rates, which are most interesting
with respect to their information content. Recall that
the most accessible measure of interest rate – yield to
maturity –  is actually dependent on the shape of the
entire yield curve. Therefore, the information it
conveys may reflect the influence of different – even
not neighbouring – yield curve segments.

Extraction of zero-coupon rates from money
market or zero-coupon instruments is straightforward
or not necessary as these instruments are frequently
quoted by their zero-coupon rate. In the case of the
interest rate swaps (IRS) the calculations are simple as
well. With IRS quotes available for virtually all
maturities and their coupon payments due at equal
time intervals it is straightforward to use
bootstrapping methods to calculate zero-coupon rates.

Calculations are more complicated when the area
of interest is the bond market. Theoretically, a basic
bootstrap method would also be possible if only bond
issues maturing at equal time intervals with regular
coupon payment schemes were available. In practice
this requirement is often not met. As a result,
zero-coupon rates and implied forward rates cannot
be extracted directly from prices of coupon bearing
securities - they have to be estimated. The methods of
yield curve estimation from bond prices are the main
focus of this paper. Yield curve extraction and
smoothing on the basis of zero-coupon instruments
will be discussed only briefly. 

Estimation of the term structure of interest rates
requires the following issues to be taken into account: 

1) Which market (market segment) is a proper
source of data?

2) Which type of interest rates (zero-coupon
rates, instantaneous rates, forward rates, or discount
factors) should be directly estimated?

3) Which yield curve model and which
functional form of the curve should be applied?

4) Which method is the best for parameter
estimation?

In this paper some of the issues mentioned above
are discussed. In each case the relevancy of a problem
is indicated and a description of implications of
making specific choices provided. 

1.1. Yield curve models and their functional forms

1.1.1. Criteria for choosing a model

Yield curve models are characterized by the following
features:

– goodness of fit (flexibility),
– smoothness,
– stability of results (robustness to changes in the

data),
– numerical stability and time of computation.

Goodness of fit

Goodness of fit plays a crucial role if interest rate
estimates are used for pricing purposes. In order to
ensure adequate precision of estimates it is
necessary to use a sufficiently flexible curve model.
A flexible curve – precisely reflecting the current
market situation may be a useful tool for e.g.
identifying optimal maturity segments for a bond
issuer or investor. If in a certain market segment a
''hump'' or a local minimum has emerged and the
corresponding yields deviate from their fair values
then it may be possible to purchase or sell (issue) a
bond under favourable conditions and make extra
profits. 

Smoothness of the curve

Smoothness of the yield curve may be a key feature if
the purpose of analysis is not identification of
mispriced securities but rather analysis of general
properties and dynamics of the yield curve and
extraction of implied expectations regarding
inflation, interest rates or future state of the economy.
Obviously, also for purposes of pricing securities an
adequate degree of smoothness is necessary but to a
lower degree. 

A yield curve may be fitted to zero-coupon rates,
forward rates, and instantaneous rates or to discount
factors. If the curve reflects zero-coupon interest rates
then its smoothness is crucial, especially if implied
forward rates – expressing market expectations – will
be extracted from it. This is due to the fact that any
fluctuations of the zero-coupon curve increase in size
when implied forward rates are calculated. The result
may be a heavily fluctuating curve of forward rates
(see Figure 1 for example).

Stability of the curve

The term stability is actually related to four different
properties of a yield curve model. They are:
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Figure 1 . Zero-coupon vs implied forward
rates – curvature amplification

Source: own calculations.
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a) robustness to outliers,
b) robustness to minor changes in the data set,
c) (non)uniqueness of estimates,
d) numerical stability.
Robustness of yield curve estimates to mispriced

securities in the data set is closely linked to its
smoothness. An overly elastic curve will be in general
too vulnerable to distortion caused by outliers. In
practice it is very difficult to find the optimal relation
between smoothness and flexibility. The problem
becomes especially important in the case of
non-liquid markets with only a small number of
different bond series (issues). In such circumstances
the most sensible solution is to employ appropriate
filtering of data. This may be a non-trivial task ? in
contrast to developed markets removing a mispriced
security from the sample may be not possible if it has
a high share in the market's total volume.

The second category of stability ? robustness to
changes in the sample ? is closely related to the
previous one, though it concerns somewhat different
issues. In this case it means ensuring an adequate
''stiffness'' of the curve, so that removing, changing or
adding instruments in the data set does not have a
disproportionate effect on its shape. This property
may be crucial if the model is supposed to be used for
pricing new bond issues, or if it describes a small
market, where a bond repayment or a new issue have
a significant impact on the total size of the market. A
frequently applied measure for stability of this kind is
the sum of out of sample pricing errors. The
minimization of its value is often used as a criterion
for finding the optimal degree of smoothness of the
curve (see Section 1.5 for more details).

The question of sensitivity to changes of the
sample is especially important in the context of
influence that movements in one segment of the yield
curve have on another. For obvious reasons a change
in the treasury bill rates should have only a limited
impact on the long end of the yield curve. It is worth
mentioning that the models analysed in this paper
show significant differences in this respect.

The problem of non-uniqueness of estimates
concerns models with non-linear error of fit function
which have multiple local optima. In such cases (e.g.
the Svensson model) repeating the calculations
several times may yield randomly changing results,
which reduces their credibility and hinders the
analysis.

Low numerical stability is a serious problem
characteristic for models with high correlation of the
basis functions constituting a curve. A significant
level of correlation causes very unfavourable
properties of matrices used to represent a model.
They manifest themselves in co-existence of
extremely large and low eigenvalues, which

potentially lead to very high rounding errors and
errors resulting from exceeding the maximal value
limit. 

The trade-off between the flexibility (goodness of
fit), smoothness and stability of the yield curve is the
basic feature of any interest rate model. Excess
flexibility leads to loss of smoothness (humps) and to
a drastic fall in its stability. This phenomenon makes
the appropriate calibration of a yield curve model
with respect to all three criteria the central issue of
yield curve modelling.

1.2. Parametric yield curve estimation

Parametric yield curve estimation methods were
developed first. This was mainly due to the fact that
it was possible to obtain results without a need for
fast computers – analytically with the least squares
method. Development of yield curve estimation
methods began in the 70-ties, after publication of the
seminal paper by J.H. McCulloch in 1971. McCulloch
was one of the first authors to present a relatively
comprehensive, general, theoretically justified and
convenient approach to yield curve estimation.

1.2.1. Polynomial and piecewise polynomial models

Yield curve estimation methods are in general based
on several common assumptions. First, it is assumed
that the observable bond prices can be represented as
a sum of discounted future cash flows (coupon and
principal payments). Second, it is assumed that cash
flows due at the same time are discounted with the
same rate regardless of the time to maturity or coupon
of the underlying security. This implies that for all
bonds from the same credit class there exists one
common curve of discount rates. Based on these
assumptions a bond price equation can be formulated
as follows:

(1) 

where pi denotes a clean price of the i-th bond, ai –
accrued interest, ci –  coupon paid on the i-th bond,
Vi – nominal value, – value of the discount factor
for cash flows due at tl.

McCulloch (1971) suggested approximating the
term structure of interest rates directly by the discount
function , with the latter defined as a linear
combination of k linearly independent1 basis functions: 

(2) 

1 In this context the linear independence means only a lack of perfect linear

dependence.
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where denotes values of the j-th basis
function for t. In order to obtain economically
interpretable results, the discount curve should be
positive and monotonously decreasing within its
domain. This is equivalent to the condition of
positive implied forward rates. 

In equation (1) the price of a bond is defined as a
linear combination of discount factors (2), the latter
being a linear function as well. With a combination of
these equations it is possible to represent the bond
price as a linear combination of the relevant
parameters:

(3) 

where:

(4) 

The above formulation of the estimation problem
facilitates the application of the least squares method
to calculate the parameters aj. The choice made by
McCulloch to directly estimate the discount curve
was motivated mainly by this convenient feature.
Zero-coupon and implied forward rates can then
easily be derived from the estimated discount curve.

Single polynomial

The initial choice of a basis function in equation (2)
was a polynomial of degree k, formally:    for j= 1,…,k
where (k >= 3). However, the simplicity of this
solution is achieved at the cost of several
unfavourable properties.

In the case of a single polynomial it is very
difficult to obtain a desirable goodness of fit with an
adequate level of smoothness and stability. The
properties of the curve depend on a degree of the
polynomial fitted. A higher degree increases the
accuracy of fit at the cost of lower stability and
smoothness, especially at the long end of the curve.
As a result, for high degree polynomials the discount
function has a tendency to large swings between
observations for longer maturities. It is usually
accompanied by a distortion of curve monotonicity. A
direct consequence of discount function instability is
a chaotic shape of the forward rate curve. 

The instability at the long end of the discount
curve stems from the mathematical properties of its
basis functions. First, the standard polynomial basis
exhibits very high co-linearity, which causes serious
numerical difficulties. Second, the instability at the
long end of the curve is additionally amplified by
high values of the basis functions and their
derivatives for large t values, which may cause strong
fluctuations of the curve for longer maturities. Third,

very high basis function values force the
corresponding parameters to take very low values (in
the order of the fourth decimal place). The resulting
rounding errors which arise during numerical
calculations in combination with high basis function
correlations may translate into a relatively low
numerical stability and precision of the estimates.

Modelling discount functions using only a single
polynomial has yet another significant drawback. The
curve constructed in this way disregards the
distribution of bonds with respect to their maturities.
A consequence may be that when applying a simple
OLS method to fit the curve, segments of the yield
curve with high concentration of observations
(usually the short end of the curve) will dominate the
overall fit at the cost of medium and long maturities.
An attempt to solve this problem through increasing
the degree of the polynomial does not yield
satisfactory results (for previously described reasons).
One of feasible methods of reducing this problem is
to adjust the distribution of bonds by applying
different weightings to them. In order to ensure equal
influence of each yield curve segment on the final fit,
the weightings should be adversely proportional to
the number of bonds in each segment. 

Piecewise polynomials

A reasonable solution to some of the aforementioned
problems is to approximate the discount curve using
a piecewise polynomial function. Models based on
piecewise-polynomial splines offer a convenient
solution to many of the above mentioned problems.
In contrast to single polynomial curves, splines
facilitate reduction of the degree of polynomials. In
effect, polynomial splines provide greater stability at
the long end of the curve. The method was first
proposed by McCulloch for second order splines
(1971) and subsequently extended to cubic splines
(1975). 

In the McCulloch's method the maturity domain
is divided into a number of segments with predefined
location and fixed length. In each of them the curve is
defined as a polynomial of order three. The points
joining the adjacent curve segments are described as
knots or knot points. In order to ensure that the spline
curve is continuous and twice differentiable it is
necessary to impose equality constraints on the
function values and their derivatives at the knot
points. A curve fulfilling these criteria can have the
following form:

(5)

where for , and otherwise2. 

2 Based on Bekdache, Baum (1997).
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The discount function remains a linear
combination of the parameters ai. Price of a bond as
defined by (1) is linearly dependent on the discount
factors. Combining both formulas enables
representation of a bond price as a linear combination
of the parameters and facilitates the application of
OLS estimation. 

An important issue is setting the number and
positioning of knots. McCulloch suggests setting their
number as an integer closest to a square root of the
number of instruments used for estimation. To ensure
equal influence of all instruments on the final fit of
the curve, the author recommended locating the
knots so that there are an equal number of bonds
between each two adjacent knots.

Flexibility of the spline-based curves resulting
from a full discretion in setting the number and
location of knots allows achieving a reasonable fit of
virtually any curve. Nevertheless, it has to be kept in
mind that increasing the number of knots improves
the fit, but at the cost of lower smoothness and
stability. An overly elastic curve can lead to a loss of
monotonicity of the discount function. 

A problem which has not been resolved by
substituting a single polynomial by a piecewise
polynomial function is the co-linearity of the basis
functions. Actually, it has been reduced to some
extent, but remains at the level of approx. 50-90%3,

which is very high. In combination with very low
parameter values this may result in significant errors
of estimates and a low numerical stability of the
results.

1.2.2. Parsimonious models

The main weakness of the models discussed so far is
their insufficient smoothness and stability. Implied
forward rates calculated from polynomial-based
discount functions have a tendency to highly
oscillatory term structure. Moreover, they do not have
any asymptotic convergence properties and –
consequently – for maturities beyond the observed
spectrum usually take totally unrealistic and
non-interpretable (often negative) values. This is
directly related to the asymptotic properties of
polynomials, which always have infinite boundaries.
An immediate consequence is a low usefulness of the
standard polynomial models in empirical research,
despite their flexibility and ease of calculation. 

A solution to these problems is provided by
parsimonious yield curve models. The most known
model of this class was put forward by Nelson and
Siegel (1987). The authors assumed that the
instantaneous interest rates are generated by a

stochastic process, which can be expressed by a
differential equation of order two. A formula obtained
by solving this equation describes the term structure
of instantaneous interest rates and has the following
form:

(6) 

where f(t) denotes the instantaneous implied forward
rate for an infinitesimally short period starting at t.

Zero-coupon rates can be calculated by averaging
the corresponding instantaneous rates:

(7) 

which gives:

The curves of forward and zero-coupon rates are
functions of four parameters: . They can
take several basic shapes: monotonous increasing or
decreasing, humped, or S-shaped.

By directly modelling the curve of forward rates
and applying very smooth functions, Nelson and
Siegel avoided the problem of forward curve
instability, characteristic for polynomial spline models.
Beside their stability and smoothness Nelson-Siegel
curves possess another convenient feature. Namely,
they have constant asymptotic limits. A direct
consequence of this is that the first derivative
converges to zero as . As a result, the curve
gradually becomes flat for longest maturities. This is a
desirable property as it reflects lack of sufficient
information to differentiate between forward rates in
different segments with very long maturities.

Another significant advantage of the Nelson-Siegel
model is a straightforward interpretation of its
parameters. A direct result of 

(8) 

is that the value of should correspond to
zero-coupon rates for ultra long maturities. 

At the short end of the curve we have:

(9) 

which implies that the sum of parameter values β0

and β1 should be equal to the level  of the shortest
interest rates.

On the basis of the zero-coupon curve (7) it is
easy to formulate the discount function:

(10) 

Note that it is non-linear in parameters.
Therefore it is not possible to express a price of a

3 Depending on the set of basis functions and their domain – author’s

calculations.
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coupon bearing bond as a linear combination of
parameters. In consequence, estimation of a yield
curve with this method requires numerical
computation, which is a clear disadvantage in
comparison to polynomial models.

A significant weakness of the Nelson-Siegel
model, resulting from its low elasticity, is goodness of
fit lower than in the case of polynomial models.
When the curve is fitted to an irregular set of data
points this can result in relatively large deviations of
model values from actually observed rates.

A method to overcome this obstacle was proposed
by Svensson (1994), who extended the Nelson-Siegel
model by adding a new component to the equation (6),
thus introducing a new hump in the curve:

(11)

The corresponding curve of zero-coupon rates
has the following form:

(12)
Two additional parameters enabled a significant

increase in the elasticity of the curve, without causing
any significant loss of the smoothness and asymptotic
properties of the model. 

The extended Nelson-Siegel model by Svensson
offering a satisfactory precision of fit and a smooth
shape of implied forward curve became very popular
in the middle 90-ties. A considerable number of
central banks worldwide have since then been using
it for estimation of the term structure of zero-coupon
and forward rates4. Nevertheless, the model has a
number of weaknesses, e.g. a limited ability to fit
irregular yield curve shapes, a tendency to take
extreme values at the short end, and a relatively
strong co-dependence of estimates in different – even
non-neighbouring – segments of the yield curve.

1.3. Choosing the objective function and functional form
of the curve

1.3.1. Choosing a type of interest rates for direct estimation

In the case of parsimonious models the functional
form of a yield curve is predefined. Consequently, the
choice to estimate directly instantaneous rates,
zero-coupon rates or discount factors is only a matter
of computational convenience.

Piecewise polynomial curves are not attached by
definition to any kind of interest rates and can be
used to approximate any of them. However, as the
fitted curve inherits all properties (smoothness,
stability, flexibility, etc.) from the underlying
piecewise polynomial the choice which interest rates
are to be directly estimated becomes crucial. The
basic criteria which must be considered are: quality
of estimates and ease of computation. 

In order to make an optimal choice it would be
advisable to try each of the feasible options. This was
done e.g. by Bolder and Gusba (2002) for the
Canadian bond market5. Applying a number of
criteria to evaluate the models authors conclude that
the best results are achieved when the curves of (in
the rank order) zero-coupon rates, discount factors
and forward rates are estimated directly. 

The results for the discount curve are much like
for the zero-coupon rates. Differences emerge mainly
at the short end of the curve. Direct approximation of
forward rates yields unsatisfactory results. Moreover,
the model implementation in this case is much more
complicated and requires more time for
computation.

Due to the best quality of results for the purposes
of this paper direct approximation of zero-coupon
rates was chosen. 

1.3.2. The objective function

In the case of yield curve modelling the objective can
take two forms: [1] minimize a sum of squared price
errors or [2] squared yield errors. Despite the mutual
uniqueness of the price-to-yield transformation
estimates obtained for the above objectives differ
significantly. This is due to the non-linear relation
between price and yield, and the differences in yield
elasticity of the price in different maturity segments.
In practice modified duration is used as a measure of
this elasticity. Yields of bonds with longer maturities
are in general more sensitive to changes in prices.
Therefore in the case of the objective function [1]
with equally weighted price errors, long term bonds
are actually given highest weightings. The result is
less accuracy at the short end of the curve6. The
problem can be solved in two ways: by applying
higher weightings to short term instruments7, or by
choosing the objective function [2], i.e. by
minimizing squared yield errors. Both approaches
should in general yield similar results. However, the
implementation of the second one entails more
computational complexity and time expense for

4 See e.g. Csajbok (1998).

5 Other publications containing this kind of analysis include: Bliss (1996),

Bekdache, Baum (1997).
6 See e.g. Svensson (1995).
7 See e.g. Csajbok (1998).
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estimation. For this reason weightings proportional to
the reciprocal of the duration are applied in this
paper. 

1.4. B-spline models

1.4.1. B-spline basis

The problem of co-linearity and the parallel problem
of numerical instability characteristic for standard
piecewise polynomials can be resolved by applying a
B-spline basis. B-spline basis allows to represent a
piecewise polynomial as a linear combination of
relatively simple and only lowly correlated elements
called basic splines (hereafter abbreviated to
B-splines), which facilitate some elementary
mathematical operations like differentiation and
integration8.  

A single B-spline is a combination of a number of
standard polynomials. A cubic B-spline (most often
used) is based on at least five knot points which
define four adjacent intervals for which only the
B-spline is positive in value. In the remaining area of
the domain its value equals 0. The B-spline basis is
constructed from a series of B-splines based on a
common set of knot points.

In order to present the technical details of the
basis construction in a more comprehensible way let
us suppose that we want to construct the basis for a
cubic piecewise polynomial with knots located at

. Let us call them primary knots (as
opposed to the auxiliary knots), as they are located
within the domain of the curve fitted. In each of the
intervals between any two adjacent knots the value to
the curve is defined as a linear combination of all
B-splines, which can be constructed on the given
knot set. From the fact that a cubic B-spline takes

non-zero values for exactly four adjacent intervals it
follows that for e.g. the first interval: it is
necessary to use knots starting at (taking positive
values from) . So the first three
B-splines begin with auxiliary knots, which are not
contained in the domain of the curve. An analogous
situation occurs in the last interval .
The B-splines which constitute the basis within this
interval begin at , and end at

respectively. Also in this case

three auxiliary knots are needed.  

As shown above, the basis for a piecewise
polynomial function with N + 1 knots is
composed of N+3 B-splines starting at 
and based on a set of main and auxiliary
knots: . Any cubic piecewise polynomial
S(x) can be represented as a linear combination of
these N + 3 B-splines:

(13)

where denotes a B-spline starting at x = k, and
ai – a corresponding parameter. For instance, the
B-splines constituting a basis for a cubic polynomial
spline on the interval <0, 4> with knots located at
x={0, 1, 2, 3, 4} are presented in Figure 2.

Before we show how to determine the value of
S(x) let us introduce some basic notation and terms.
A B-spline of degree n based on a sequence of
primary knots is a combination of ordinary
polynomials of degree [n – 1]. It is therefore [n – 2]
times differentiable on the interval including its
auxiliary knots . A cubic B-spline has a
degree equal 4. Let us introduce the following
notation: i-th B-spline (taking positive values from
the i-th knot) of degree n will be denoted as: .

Unfortunately the value of a B-spline at a given x
cannot be represented by a single (non-compound)
function. The evaluation is usually done recursively
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Figure 2 . B-spline basis for the interval
<0,4>; equidistant knots

 

Figure 3 . B-splines of different degrees

8 A detailed discussion and derivation can be found in Lancaster,

Salkauskas (1986).

Source: own calculations.Source: own calculations.
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on a basis of B-splines of lower degrees using the
following formula:

(14)

for i = [-3, -2,…, N – 1], n = [1, 2,…], where  ki denotes
position of the i-th knot. To use this calculation scheme it is
necessary to determine the values of a B-spline of degree 1:

(15) 

With application of the above formulas it is easy
to evaluate any B-spline and to find the value
of a piecewise polynomial S(x) for any .
Shapes of B-splines of different degrees are presented
in Figure 3. 

1.4.2. Least Squares estimation

B-splines facilitate curve modelling with piecewise
polynomials.  If a curve is to be fitted to a set of
observable points (e.g. money market rates or interest
rate swap quotes) then the application of the least
squares method is possible. In the remainder of this
section practical issues related to B-spline modelling
are discussed. In order to make the notation
transparent and easy to follow the following
convention is introduced: a) capital letters in bold
type represent matrices, b) small letters in bold type
represent column vectors, c) all letters in standard
type (not bold) represent scalar values.

Let us suppose that we want to fit a piecewise
polynomial curve S(x) to a set of observable money
market rates r(x) for . The polynomial is
based on a set of primary knots . Due to its
convenient statistical properties the sum of squared
errors of fit will be used as a measure of goodness of
fit and denoted S2. The purpose of estimation is to
find a curve which minimizes the value of the
following expression: 

(16) 

where m denotes the number of data points ,
to which a piecewise polynomial S(x) is fitted.

The LS curve estimate is defined as a vector of
parameters, for which the following set of conditions
is fulfilled:

for j=-3,…, N – 1. (17) 

A solution of the above system of equations gives
so called normal equations, which can be reformulated
in a matrix form as follows:

(18)

where:

(19)

After a proper transformation of equation (18) we
obtain the standard form of the LS estimator: 

(20)

As already mentioned B-splines can be used to
construct piecewise polynomial curves with very
convenient mathematical properties. Nevertheless,
curve fits obtained with this method are in principle
identical to curves obtained on a basis of standard
polynomials. The difference is purely technical – but
crucial – and consists in the correlation of columns in
the matrix B. Low level of co-linearity between the
columns enables fast and precise inversion of the
cross-product matrix BTB. The next difference lies in
the simplicity of imposing restrictions (e.g. for
smoothing or stabilizing) on piecewise polynomials.
In the case of B-spline curves a number of relatively
complex restrictions9 can be imposed in a linear
form. This feature of B-splines represents a
significant advantage over the standard polynomial
basis. This issue is be discussed in some more detail
in the next subsection.

1.5. Non-parametric estimation methods

The B-spline model discussed in the previous
subsection is to a large extent analogous to the model
proposed by McCulloch based on standard
polynomials Just like in the case of standard
polynomials, goodness of fit and smoothness are
dependent on the number and location of knots. As a
result, B-spline models inherit some weaknesses of
standard piecewise polynomials. In this subsection
we discuss a method to solve the problem of yield
curve’s excess elasticity put forward by Fisher,
Nychka and Zervos (1994).

1.5.1. Smoothed splines

In the spline models described so far the preferred
degree of curve smoothness and goodness of fit was
controlled by changing the number and location of
knots. Despite some adjustability the method had
significant constraints and bore serious problems of

9 However in some cases through some simplifications.
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technical nature. Fisher, Nychka and Zervos avoided
these problems by fixing the knots and applying a
widely known stabilizer10 to ensure an adequate level
of smoothness:

(21)

where a and b are locations of the first and last knot
point respectively. is a measure of the curvature
of S(x). It takes values ranging from 0 for a straight
line and gradually approaches infinity for curves with
increasingly oscillatory behaviour. 

To obtain a desired goodness of fit and an
adequate level of smoothness the objective function
(16) is modified by adding a scalar multiple of :

(22)

which gives:

where λ represents a scalar smoothness parameter.
The stabilizer and the objective function

can actually be applied both to the standard and
B-spline piecewise polynomials. However, the

convenient mathematical properties of B-splines make
it possible to considerably simplify the notation and
calculations, which explains their widespread use.

Eilers and Marx (1996) observed that with
equidistant knots the value of can be approximated
with the following expression:

(23)

Using the above expression the minimum value
of the stabilizer can be found as follows:

(24)

where D is a matrix form of a second order difference
operator. For a piecewise polynomial based on [N+1]
primary knots: and defined by [N+3]
parameters: the matrix D has dimension
[N+1]x[N+3] and the following form:

(25) 

Just like in the case of the objective function (16)
the vector of parameters for which the value of (22) is
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Figure 4 . Money market rates in Poland – curve estimates for different levels of smoothing

10 See e.g. Haerdle, Linton (1994).

Source: own calculations.



BANK I  KREDYT paêdziernik 200662 Financial Markets and Institutions

minimized – the curve estimator – can be found by
solving the following system of differential equations:

(26) 

or equivalently:

, for j=-3,…, N - 1.

A combination of the results in (18) and (24)
gives the following set of first-order conditions which
constitute a solution to the problem defined by (26)11: 

(27) 

After solving the above equation for the
parameters a we obtain the OLS estimator of the
curve parameter vector: 

(28) 

The most significant component of the above
formula is the smoothness parameter λ which
controls the shape of the curve. By changing its value
(level of smoothing) it is possible to influence the
effective number of parameters12. Reducing their
effective number results in a smoother curve at the
expense of worse accuracy of fit. On the other hand,
decreasing the value of the smoothness parameter, i.e.
increasing the effective number of parameters yields
more flexible and fluctuating curve with a better
goodness of fit. In the Figure 4 curves estimated with
this method are presented along with the influence of
the changing value of the smoothness parameter. 

Application of the above described smoothing
splines model requires to develop a method of setting
the appropriate value of λ. Fisher et al. (1994)
proposed to use the so called Generalized Cross
Validation (GCV) approach to find the optimal value
of λ for each single day. Although the method is
reported to give very good results, its implementation
may cause serious problems of technical nature.
Using numerical methods to determine the optimal
value of λ (by e.g. the GCV criterion) requires a
repeated estimation of the curve for a set of λ values.
If the curve is being fitted to an observable set of data
points then a single iteration of the estimation
process (for a given value of λ) proceeds analytically
on the basis of the formula (29). In this case the
application of GCV is relatively simple. If however,
the curve is being fitted to unobservable interest rates
(e.g. bond market zero-coupon rates) then the
application of linear estimators is not possible and

numerical methods must be used to find the fit
within each iteration. In such a situation the time
expense increases dramatically and can reach several
minutes for a single curve13.  If the value of  λ is to be
set for each curve separately then the total estimation
time would rise dramatically, which could make the
analysis of long time series very time demanding and
inconvenient. For this reason in practice a constant
smoothness parameter is applied, and its value set
arbitrarily or through a one-off use of GCV or other
method14. 

1.5.2. Variable roughness penalty models

The piecewise polynomial models with a single
parameter controlling smoothness of the entire curve
have serious limitations. In general they stem from
the fact that these models disregard the differences in
volatility and smoothness of different yield curve
segments.  By definition, they choose an ''average''
smoothness for the whole curve, which frequently
causes an inadequate level of accuracy (large pricing
errors) for short maturity instruments, and strongly
fluctuating interest rates at the long end of the
curve15.  

A solution to this problem was put forward by
Waggoner (1997), who made the FNZ method more
flexible by applying a Variable Roughness Penalty
(VRP) and modifying the objective function as
follows:

(29) 

where a i b denote respectively the beginning and the
end of the fitted function's domain. 

Introducing a maturity-dependent power of
smoothing made it possible to achieve both: a
desirable goodness of fit and an appropriate level of
smoothness for each yield curve segment. In the
Waggoner’s model λ(x) is a piecewise constant
function comprised of 3 segments. The division to
segments was made arbitrarily – according to the
natural market division – into the segments of short-,
medium-, and long-term US treasury securities. The
fixed division into the intervals: <0; 1), <1; 10), <10;
30> is undoubtedly a significant constraint on the
model's adjustability. 

Anderson and Sleath relax this constraint and
apply a completely continuous smoothing function
controlled by three parameters, given by:

11 For a more detailed discussion see e.g. Bolder, Gusba (2002).
12 Details on determining the effective number of parameters can be found

in Fisher, et al (1994).

13 Example of estimation times for a number of curve approximation

methods can be found in the paper by Bolder and Gusba (2002), p. 66. The

estimation time of a single curve depends mainly on the number of knots,

choice of starting parameter values and the desired accuracy of fit.
14 See e.g. Waggoner (1997) or Anderson, Sleath (2001).
15 See Waggoner (1997 p.1); Bliss (1996).
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(30) 

The proposed method of smoothing facilitates
precise calibration of the model but requires
application of numerical procedures to find the
optimal set of smoothing parameters, evaluate the
roughness penalty and finally – to find the fit. Apart
from increasing the complexity of calculations this
leads to a potentially longer time of estimation.

1.5.3. Extension of the FNZ model to a piecewise continuous penalty
function

In order to ensure high flexibility of a spline based
yield curve model without necessitating numerical
integration, it is possible to combine both of the
above described approaches. 

In this section an extension of the FNZ model is
proposed to a piecewise continuous penalty function,
which enables analytical evaluation of the
smoothness component

(31) 

The method proposed is based on the findings by
Eilers and Marx (1996), who applied a discrete
difference stabilizer instead of the above presented
penalty on the integral of the squared second
derivative. Let us generalize their model – with a
single roughness parameter controlling the
smoothness of the entire curve – to a case of a
piecewise continuous stabilizer. 

For defined as a polynomial
cubic B-spline with equidistant knots located at

the following relation holds:

(32) 

where h denotes a constant inter-knot distance. Due
to the properties of B-splines, which take non-zero
values only in a relatively narrow interval, the exact
bounds of the indexes in the sums in the formulas for
their derivatives will be omitted. 

With the formulas for B-spline derivatives given
by de Boor (1978), it is possible to transform the
above expression in terms of second degree B-splines:

(33) 

Given the properties of 2-nd degree B-splines,
further transformation16 leads to the following
formulation:

(34)

The first term on the right side is equivalent to
the difference penalty applied by Eilers and Marx
(1996). Let us recall that it has the following form:

(35)

The authors observed that there is a very strong
connection between both penalties. It results from the
equivalence between P and the first component of .
Note that if we attach a different level of smoothness
λ to each B-spline Bi then the first term in (35) can
easily be transformed to the difference penalty P:

(36) 
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16 For a step-by-step derivation see Eilers and Marx (1996).
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where h
..

i denotes (appropriately re-scaled) i-th
(corresponding to the i-th spline) element of the
vector h

..
of roughness parameters. 

The main advantage of using P instead of is a
significantly reduced complexity of notation and
computation while the properties of the penalty are
mostly preserved. Eilers and Marx point out that the
difference penalty P is a good discrete approximation
of .

The expression (37) can easily be transformed to
a matrix form, however its weakness is the lack of a
direct interpretation of the roughness vector h

..
. This

is a direct consequence of properties of the second
degree B-splines, which cover 2 adjacent inter-knot
intervals and partially overlap with the neighbouring
splines. For this reason it is not possible to relate a
given value of the vector h

..
to a single segment of the

fitted curve, and to interpret h
..

as a function. However,
this can be achieved after a proper transformation of h

..
.

Figure 5 contains a schematic representation of
the relation between ordinates of the roughness
penalty vector and the corresponding B-splines.
Interpretation of this relation is complicated by the
fact, that there are two different penalty function
values attributed to each interval and corresponding
to two distinct B-splines. Nevertheless, it is
straightforward to show that each two penalties
which correspond to adjacent B-splines can easily be
replaced by a single value. It can be shown that its
value is a weighted average of the overlapping
penalties in each inter-knot interval. An example of
the separated smoothness penalties is represented by
the red segments in Figure 5.

Note that if before integration the curve domain
is divided into intervals defined by its knot points
then P can be represented as follows:

(37)

In the above formula in each interval the
function is integrated twice, with two different
smoothing parameters applied. The procedure can be
simplified by applying a common smoothness
parameter h

~
j :

(38)

which gives:

where 

It is now straightforward to see that after
transformation the smoothness parameter vector h

..

can be interpreted as a piecewise continuous
smoothing function:

for  , where j={0,1,…, N - 1}.
(39)

The vector can be represented
as follows:

, where (40)

(41) 

As indicated above, the modified difference
stabilizer (37) represents a relatively accurate and
convenient approximation of a piecewise continuous
smoothing function. In practice it proves to be also a
satisfying approximation of completely continuous,
smooth functions. 

The number of different values taken by the
proposed smoothing function equals the number of
inter-knot intervals. In practice their number is
usually set to 10–20. For instance, Anderson and
Sleath (2001) use on average 12 knots, whereas
Bolder and Gusba (2002) about 20. A piecewise
constant function taking about 10-20 different values
enables a satisfying approximation of the majority of
smooth functions. This implies that the method
proposed in this paper offers much better flexibility
than e.g. the three-parameter stepwise smoothing
curve applied by Waggoner (1997). Moreover, due to
the possibility of evaluating analytically, the
increase in elasticity virtually does not cause an
increase in complexity of calculations and –
consequently – longer estimation time. Figure 6
presents a possible approximation of the continuous
smoothing function used by Anderson and Sleath by
the means of a piecewise constant function. It is
evident that for 15 knots the approximation will be
satisfactory for the majority of practical applications.
The function h

~
(x) described by equation (40) can be

therefore treated to some extent as a quasi-continuous
function. 

The main advantage of the proposed difference
stabilizer P is the convenience of application. With
the matrix notation and analytical evaluation, its
implementation and usage is much simpler and faster
than in the case of continuous smoothing functions. 

In order to facilitate the transformation of the
expression (37) to a matrix form let us reformulate P
as follows:
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(42)

It is now easy to see that 

(43)

where ΛΛ is a diagonal matrix constructed on the basis
of [N+1] ordinates of vector h

..
. The result is a

computationally convenient and easily differentiable
quadratic form.

Now the question of the parameterization of the
piecewise constant function has to be resolved. The
function values are defined by the parameter vector h

..
.

With no additional restrictions imposed the number
of parameters is equal to the number of knots.
However, for parameter numbers encountered in the
literature ranging from 10 to 20, this would translate
into several additional parameters. The
over-parameterization would cause considerable
difficulties and result in much longer time of
estimation. Furthermore this would make the results
less reliable and reasonable. 

One of possible solutions to this problem is to
express the smoothness parameters as a function with
a parsimonious parameterization. Let us denote this –
in an ideal case monotonous and smooth – function
as l(x), then the parameter vector h

.. 
defining the

smoothness function can be represented as follows:

, for i = 0, 1,…, N, (44)

where ki denotes a location of the i-th main knot.
The above parameterization of the smoothing

function based on the function (31) has been used for
the purposes of this paper. 

1.6. Zero coupon rate models for the bond market

So far the discussion concentrated mainly on
presenting analytical solutions to the problem of
curve fitting to observable data (e.g. money market
rates). This section presents a general framework for
estimation of bond market zero coupon rates both
with the Svensson model and cubic spline models.

As a starting point let us represent the bond price
equation in terms of cash flows:

(45)

where pi denotes the settlement (dirty) price of the
i-th bond, ci,j – the j-th cash flow on the i-th bond
(including principal repayment), dtj – a discount
factor for cash flows due at the time tj.

Taking into consideration the remarks we made
on the choice of the type of interest rates to be
directly estimated (see Section 1.3), we decide to fit

the curve to zero coupon rates as the most reasonable
solution.

Due to its computational simplicity and notational
convenience the convention of continuously
compounded interest rates is used. A unique relation
between the discretely and continuously compounded
rates ensures that using the latter does not cause any
bias of the results. In the final phase of the calculations
continuous rates will be translated into discrete rates.

Let us begin by representing the bond price
equation (46) in a matrix form: 

(46)

where p̂i  denotes a fitted price of the i-th bond,  θ –
the curve parameters, ci – vector of cash flows, di –
vector of  discount factors corresponding to cash
flows on the i-th bond.

Vectors ci and di have the following form:

(47) 

where ci,j denotes the j-th cash flow on the i-th bond
for j = {1, 2,…, ni}, ni – the number of cash flows on
the i-th bond17, δi,j(θ) denotes the value of the
discount function (conditional on θ) for j-th cash flow
on the i-th bond.

With the above notation at our disposal the
vector of fitted bond prices can be formulated as
follows:

(48)

where m denotes the number of bonds in the data
set, diag[.] – vector of the diagonal elements of a
square matrix, and finally

(49)

In both of the above formulas the length of the
vectors ci and di (θ) has been increased to be equal
to the length n.max of the vector corresponding to a
bond with the largest number of cash flows. The
vectors were extended by concatenating a number of
zeros equating the vector's length to n.max. With this
modification it was possible to apply the compact and
very convenient formulation (49) for the bond price.

The main component of the objective function –
squared price error – can be given the following form:

(50) 

where p denotes a vector of the observable bond
prices, W – a diagonal matrix of weights

17 The last coupon and the principal repayment are discounted together.
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corresponding to each single bond. The weightings
are used in order to increase the influence of the most
liquid and benchmark bonds on the parameter
estimates, and to capture  differences in the duration
of the instruments. The result should be a yield curve
reflecting each bond market segment with equal
precision and giving a reasonable overall picture of
the term structure of interest rates (see Section 1.3).

For a full specification of the model two elements
are still missing: a functional form of the discount
curve and the objective function. In the next two
subsections we discuss the specification details of the
two models under consideration – the Svensson
model and a VRP cubic spline model.

1.6.1. Discount function and objective function in the VRP model 

Let us now present the functional form of the discount
curve (48) for the B-spline VRP model. The curve of
zero coupon rates will be modelled in the convention of
continuous interest rates. The maturity range covered
and the location of knots are determined by the
maturity structure of instruments in the respective
bond market. For the purposes of this paper a yield
curve model covering the maturity range from 0 to 12
years was implemented. For the ease of calculation
equidistant knots were chosen and located at maturities
of every second year, i.e. {0, 2, 4, 6, 8, 10, 12}.

The zero-coupon curve is defined as a linear
combination of 9 B-splines, which altogether are
based on 7 primary knots and 6 auxiliary knots:

,  for (51)

where θθ is a column vector of parameter values with
length equal to the number of B-splines, bt(t) –
denotes the value of the i-th (starting at the k-th knot)
B-spline.

With the notation introduced as above the value
of a discount factor defined by (48) can be
represented as follows:

(52) 

where denotes time to the j-th payment on the i-th
bond.

Estimation of the parameter vector θθ amounts to
finding a minimum of the objective function whose
general form is represented by (30). With the
expression (51) it can be rewritten in a matrix form:

(53) 

A variety of numerical procedures can be used to
find the optimal value of θθ. For the purposes of this

paper Newton-type algorithms were used.

1.6.2. Form of the discount and objective function in the Svensson
model

In the case of the Svensson model also a curve of
zero-coupon continuously compounded interest rates
was chosen to be directly estimated. Given the
properties of the function there is no need to
explicitly restrict the area of domain - unlike in the
case of the VRP model.

A value of a single discount factor defined by
(48) can be represented as follows:

(54) 

where denotes the value of a zero-coupon
curve for a time to maturity corresponding to the j-th
cashflow on the i-th bond. The curve is defined by a
set of six parameters θθ and its functional form is given
by (12).

The main advantage of the parsimonious
Svensson model is a relatively high level of
smoothness both of the forward and zero-coupon rate
curve. Therefore it is not necessary to impose
additional stability constraints on the curve, and the
objective function (51) can be used.

2. Svensson model vs VRP model – analysis of
estimates for the Polish bond market

In this section we analyse the properties of the
parsimonious model by Svensson and the B-spline
model with a variable roughness penalty (VRP). The
analysis is conducted using data from the Polish bond
market from 03.2004 to 03.200618. 

The yield curve model encompasses bonds with
actual time maturity ranging from 1 to 12 years at the
time of estimation. Due to low liquidity and
potentially ineffective market pricing, bonds with less
than one year remaining to maturity were not
included in the data set. The short end of the curve
was estimated using the interbank deposit market
fixings - WIBOR rates. A single yield curve was
approximated using a combination of 8 WIBOR rates
and 13-15 treasury bond prices. Weightings applied to
the instruments are dependent on their duration, and
in case of bonds also liquidity.

2.1. Setting the smoothness penalty for the VRP model

In the previous section a general specification of the
models has been presented. A crucial issue which has

18 All calculations were made with R – the open source system for

statistical computing. See http://www.r-project.org for details.
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not been discussed yet is a method of choosing the
roughness parameters for a VRP model. 

An adequate level of roughness penalty should
ensure a desirable smoothness of the curve, and
improve stability of estimates. With the penalty
parameters adjusted properly a stabilizer applied to
the objective function serves as a kind of a “skeleton”
supporting the curve when the data set used for
estimation changes or – in particular – is reduced. For
this reason, the optimal function of smoothness levels
λ(t) is usually chosen as the one which minimizes the
sum of out-of-sample errors19. 

Bliss (1996) and Waggoner (1997) apply the
out-of-sample method to calculate the optimal
roughness penalty for the US bond market. They divide
the data set into two equally large subsets, one of which
is used to estimate the yield curve. Yield curve
estimates are then applied to price bonds from the other
subset and calculate the out-of-sample errors of fit. 

Given the low number of instruments in the
Polish bond market applying the same method would
be not feasible and methodologically incorrect. For
this reason a modification of this approach has been
used in this paper. The method is called leave-one-out
cross validation20 and consists in multiple estimation
of a single curve each time with one bond omitted
from the sample. The price estimates for omitted
bonds are compared with their actual market pricing.
A sum of squared pricing errors for all bonds
calculated this way is a measure of the out-of-sample
pricing error.  It is minimized by adjusting the
parameters of the smoothing function. Anderson and
Sleath use function with the following form:

(55)

The same function has been applied in this
paper. The parameters were calculated on the basis of
curve estimates for 25 different days representing the
middle of each month included in the data set, i.e.
03.2004–03.2006. Using a day from the middle of
each month for calculation guarantees that all shapes
that the yield curve has taken within the sample

period are included in the analysis. Actually, a rough
estimate of smoothness parameters could be obtained
through out-of-sample error minimization for a
sample of just several dates. Optimization based on a
larger number of dates allows to fine tune the rough
estimate. However, the reaction of estimates to
additional dates in the analysed sample becomes
insignificant after a certain number of dates included
is reached. In the case of the VRP model implemented
for Poland the smoothness parameter estimates were
rather stable when the number of dates in the sample
exceeded 20. As a result, the smoothness parameters
calculated this way should be a good approximation
of the full sample estimates.

The reason for the relatively low number of
curves used to determine the smoothing parameters is
mainly the time expenditure for computation.
Estimation of a single curve takes about 30 seconds. If
the minimum is reached after 20 iterations on
average, then the time needed to compute is
0.5x20x14=140 minutes. Using a larger number of
days for calculation would result in a significantly
higher time expenditure with potentially only slight
improvement in precision. It is not uncommon to
conduct out-of-sample optimization on a relatively
small subset of available data. This approach was
used by e.g. Bolder and Gusba (2002).

2.2. Goodness of fit

This subsection evaluates the models by comparing
their goodness of fit. In order to ensure a complete
comparability of results the same data set is used for
estimation of both models.

Two measures of goodness of fit are used. The
first is the root mean squared error (RMSE) defined as:

(56)

where m denotes the number of instruments used for
estimation. The second measure is the mean absolute
error (MAE) defined as:

(57) 

In RMSE more weight is assigned to extraordinarily
high error values. Large differences between RMSE and
MAE indicate a large number of large errors of fit. 

19 This optimality criterion for the roughness penalty parameters was used

by e.g. Waggoner (1997), Anderson and Sleath (2001), Bolder and Gusba

(2002).
20 It is used also by e.g. Anderson and Sleath (2001) for the British bond

market.

Model Price RMSE Price MAE

mean median std. dev. 3Q-1Q mean median std. dev. 3Q-1Q

Svensson 0.076 0.071 0.026 0.027 0.060 0.056 0.018 0.023

VRP 0.070 0.068 0.026 0.021 0.054 0.052 0.017 0.016

Table 1 . Goodness of price fit (PLN/100 PLN of nominal value)

Source: own calculations.
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Table 1 presents the RMSE and MAE statistics for
both yield curve models. In each case the statistics
were calculated on the basis of ca. 500 separate
estimations. The median and interquartile range
(difference between the quartile III and I) were
provided to facilitate the analysis of the distributions,
in particular to take into account the influence of
outliers, which can potentially distort the values of
mean and standard deviation statistics.

Although the results are actually comparable, the
VRP model performs slightly better – on average by
0.006. Distributions of errors from both models are
skewed to the right – which is quite typical for
distributions of squared variables. Significant
differences between RMSE and MAE statistics
indicate that there are a potentially large number of
exceptionally high pricing errors. Table 2 contains
estimates of the pricing bias (mean value of errors)
and pricing error statistics for different yield curve
segments.

For both models estimates of the mean error
(bias) are not significantly different from zero
(t-values lower than 1) in each maturity segment.
However, in the sample the mean error was always
higher for the Svensson model. The distribution of
errors across maturities is roughly uniform although
the Svensson model had a few significant pricing
errors in the longest maturity segment as indicated by
relatively high RMSE and moderate MAE. 

The above results are compatible with the
properties of both models (as described in section 1).
The VRP model – with theoretically unlimited
elasticity was expected to have a higher precision of
fit. Relatively small differences between pricing
errors of both models result from a small number of
securities in the Polish bond market. The elasticity of
the VRP model is not fully utilized when there are

only one or two bonds between neighbouring knots.
Estimates for other markets presented in the literature
confirm this explanation. Pricing errors for the
Svensson model are in general significantly higher
than for the VRP model. In-the-sample MAE statistics
obtained by Bliss (1996) for the US Treasury bond
market were equal 0.18 for the Svensson model, and
0.10 for the FNZ B-spline model. MAE statistics for
the Canadian bond market obtained by Bolder and
Gusba (2002) were equal 0.73 for the Svensson model
and 0.21 for the B-spline zero-coupon model. The
above presented pricing errors for the US and Canada
are significantly higher than the errors for Poland.
This is again related mainly to a relatively small
number of bonds in the Polish bond market, but it
also confirms the efficiency of pricing at the short end
of the curve (1–3 years) where the number of bonds is
larger.

2.3. Smoothness and stability of estimates

Beside the goodness of fit, smoothness of a yield
curve and stability of parameter estimates are the
main determinants of the model's usefulness. Both
models have similar performance in this respect. The
curves of zero-coupon and forward rates are smooth
and mostly identical, although minor differences
occur in some cases. Figure A in Appendix presents
samples of zero-coupon curve estimates for both
models. Figure B presents the corresponding curves
of forward rates.

Smoothness (and elasticity) of a yield curve is
closely related to its stability, defined as robustness
to changes in the data set. Table 3 contains results
of out-of-sample analysis conducted for both
models with the leave-one-out cross validation
method.

Model Time to maturity (years)

<1; 2) <2; 3) <3; 5) <6; 8) <8; 10)

Svensson bias -0.006 0.013 -0.007 -0.009 -0.017

RMSE 0.074 0.093 0.079 0.077 0.118

MAE 0.058 0.074 0.059 0.061 0.075

VRP bias -0.001 0.009 -0.003 0.008 0.012

RMSE 0.066 0.073 0.068 0.056 0.072

MAE 0.050 0.057 0.051 0.042 0.043

Table 2 . Estimates of mean error (bias) and RMSE/MAE statistics in different yield curve
segments

Model Price RMSE Price MAE

mean median std. dev. 3Q-1Q mean median std.dev 3Q-1Q

Svensson 0.093 0.081 0.030 0.031 0.073 0.069 0.022 0.025

VRP 0.092 0.079 0.031 0.032 0.074 0.067 0.023 0.025

Table 3 . Stability of estimates – out-of-sample pricing errors

Source: own calculations.

Source: own calculations.
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Before discussing the results, let us recall the
basic features of both models which are critical for
the results of the out-of-sample analysis. First, the
Svensson model has a parsimonious functional form
ensuring an adequate level of smoothness and
stability. It is therefore expected that the model
performs good in the stability analysis. The B-spline
models are potentially perfectly elastic and – as a
consequence – potentially very unstable. However,
with the VRP methodology adopted here the model is
optimized for stability (minimized out-of-sample
errors). For this reason its results should be good as
well while still offering comparable (or better)
goodness of fit.

Although the results from both models are very
similar for the Polish bond market, in most cases the
VRP model shows slightly better performance. The
out-of-sample error statistics in Table 3 are consistent
with the results presented in the literature for other
bond markets. Anderson and Sleath’s (2001) MAE
estimates for UK are 0.09 for the Svensson model and
0.088 for the VRP B-spline model. 

Table 4 reveals interesting facts about the
distribution of errors across maturities. There is a
clear positive correlation between the value of RMSE
and MAE statistics and time to maturity. This is
related to a relatively low number of bonds in the
medium and long maturity segments in the Polish
bond market – since 2004 the gap between maturities
of longest bonds ranged between 2 and 3 years. When
a bond was removed from the sample in the
out-of-sample analysis, the gap could increase to even
5 years. As a result, out-of-sample yield curve
estimates in the medium and long segment deviated
significantly from full sample estimates for Poland. 

2.4. Conclusions

The above presented empirical results were obtained
for the Polish bond market characterized by a
relatively low number of different bond issues. As a
result, a thorough analysis of VRP model’s
capabilities was not possible, which resulted in fairly
similar results for both models. Nevertheless, VRP
outperformed other models by a small margin in most
cases. 

The advantages of the B-spline VRP models over
the parsimonious Svensson model are widely known
in the literature. While the B-spline models are
considered fairly robust analytical tools21 the
Svensson approach has several widely known
weaknesses which were not addressed directly in this
paper. The most important of them are:

–  low elasticity at the short end of the yield
curve (see e.g. Gurazdowski 2003),

–  high degree  of instability and a tendency to
''explode'' at the short end (see e.g. Stamirowski
1999),

– non-uniqueness of estimates and their
dependence on the starting point for estimation (see
e.g. Csajbok 1998),

– high correlation of estimators, and low
robustness of estimates to changes of instrument sets
or their prices in distinct - even distant (not adjacent)
- segments of the curve (see e.g. Anderson, Sleath
2001).

As the main advantages of the Svensson model –
low complexity and computational requirements –
have become less important22 a number of
institutions switched to piecewise polynomial VRP
models. The VRP models are currently used by a large
number of major central banks worldwide, e.g.
Federal Reserve Banks in the US, the Bank of Japan,
the Bank of England (BIS 2005). 

3. Interest rates in Poland - term structure and
dynamics

In this section we use the VRP estimates to analyse
bond market dynamics in Poland. In particular, we
apply a simple time-series based method to evaluate
the influence of economic events (e.g. monetary
policy decisions) on the shape and level of the yield
curve. Figure 7 presents the VRP model based
zero-coupon rate estimates for the Polish bond
market.

21 See e.g. Bliss (1996), Waggoner (1997), Anderson, Sleath (2001), Bolder,

Gusba (2002).
22 Mainly due to a fast development of computer technology, which

allowed a drastic reduction in the time of computation.

Model Time to maturity (years)

<1; 2) <2; 3) <3; 5) <6; 8) <8; 10)

Svensson RMSE 0.077 0.086 0.096 0.107 0.160

MAE 0.058 0.071 0.073 0.085 0.130

VRP RMSE 0.076 0.082 0.096 0.108 0.150

MAE 0.059 0.067 0.074 0.085 0.118

Table 4 . Out-of-sample pricing errors in different yield curve segments for the Svensson and
VRP model (PLN/100 PLN of nominal value)

Source: own calculations.
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3.1. Bond market dynamics in Poland

A comprehensive analysis of bond market dynamics
should be based on a data panel consisting of time
series of zero-coupon rates covering a full range of
maturities. Zero-coupon rates obtained for Poland
with the VRP model (see Figure 7) are appropriate for
this purpose.  

Within the framework of “traditional” time series
analysis, complete identification of the processes
determining the yield curve structure and dynamics
would require a multi-dimensional and potentially
integrated structural VAR model with a multivariate
GARCH noise process. Such comprehensive
time-series modelling is beyond the scope of this
paper. The analysis conducted in this section is
limited to univariate analysis of zero-coupon rates in
a single yield curve segment. This is sufficient to
fulfil the main objective of this section, which is to
capture the basic properties of bond market dynamics
in Poland and present a method of testing influence of
economic events on interest rates. 

The results presented below were obtained for 5-
year zero-coupon rates. The 5-year bond market
segment has satisfactory liquidity and its dynamics
should capture both the market’s short term forecasts
of central bank rates as well as medium term
expectations regarding inflation, monetary policy and
other factors like GDP growth and credit risk. The
analysis covers the time range 03.2004–03.2006 and
includes virtually one full cycle of monetary policy
tightening and easing (see Figure 8). This should
guarantee that all basic yield curve shapes are
included in the sample thus enabling a proper and
unbiased examination of the data generating process. 

The time series of 5-year zero-coupon rates were
tested for integration with the ADF and KPSS unit
root tests. In either case strong evidence was found in
favour of the unit root hypothesis, which implied
integration of order 1. Further analysis of the
differentiated time series revealed heteroscedasticity
(variable variance of the noise process), high kurtosis
(7,52 vs. 3 in a Gaussian distribution), and volatility
clustering. The above features – characteristic for
GARCH processes – were taken into account in the
final specification of the model. Eventually the model
was structured as a zero-mean AR(1)-GARCH(1,1)
process with the following specification and
parameter estimates:

(58)

where rt denotes a 5-year zero-coupon rate at the time
t, σ2 – variance of the white noise component, and
Ut~N(0,1). The estimates were found statistically
significant at the standard level 5%.

3.2. Influence of changes in central bank rates on bond
yields

With the above presented model it is possible to
forecast volatility in the bond market (at least for a
short time horizon). Volatility forecasts can be used to
formulate interval forecasts of the level of interest
rates. The concept of interval forecasts consists in
determining a fluctuation range (confidence interval)
which – with a given probability – will not be
exceeded within a given time in the future. A forecast
with a 90% confidence interval assumes, that in only
10 out of 100 cases the realization of the analysed
process will exceed the forecast interval bounds. If we
assume, that these 10% correspond to market's
reactions to unanticipated and significant events then
within the same framework a test for the significance
of these events can be constructed. Bounds of the
interval forecast can be treated as critical values of
the test and used for evaluating the realized reaction
of the variable tested. If the bounds are exceeded then

Source: Reuters.
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Figure 7 . Term structure of zero-coupon
rates in Poland

Source: Reuters; author’s calculations.
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with a probability of making a mistake equal 10% a
null hypothesis should be rejected that the market's
reaction to a given event (and thus its influence) was
statistically insignificant (realization of the noise
disturbance). 

In order to present a possible area of application
of this test let us analyse the influence of changes in
the National Bank of Poland base interest rate on the
domestic bond market. The analysis covers several
dates from the period March 2004 – March 2006. 

The test is conducted on the basis of zero-coupon
rates with maturities from 1 to 12 years estimated
with the VRP model. Testing the significance of the
yield curve's reaction to an event requires a prior
estimation of a series of critical values corresponding
to different market segments. A set of critical values
allows constructing a line of critical values which can
be used for graphical evaluation of the results. In
Figure C zero-coupon rate estimates for the Polish
bond market are presented for dates immediately
before and after NBP's monetary policy decisions.
The reactions to decisions in June, July 2004, and
June, July 2005 were analysed. The data sample
contains decisions which had, and which did not
have a significant impact on the market. This should
facilitate a proper evaluation of the method proposed.  

It's worth noting that the width of confidence
bands varies across dates and maturities. It is
determined by two major factors: the forecast of
volatility in a given maturity segment and a number
of days between the dates compared. The width of the
confidence band is proportional to volatility on the
one hand, and to a square root of time between the
dates compared on the other.

Charts presented in Figure C facilitate visual
evaluation of the market's reaction to NBP’s interest
rate decisions. The test is conducted by comparing a
zero-coupon curve a day after the NBP MPC’s meeting
with its 90% confidence interval forecast made before
the decision. If the confidence bands are exceeded
then the market's reaction was statistically significant
and – by implication – the decision not fully
expected.

The analysis of yield curve reactions to NBP
decisions reveals some interesting facts about the
market’s expectations regarding future interest rates
in Poland. In particular, the results indicate that the
Reuters economist poll23 has only limited value as a
source of information about the market's interest rate
expectations.

Before discussing the main findings let us briefly
recall several NBP’s monetary policy decisions
between March 2004 and March 2006. The main

focus is on the yield curve reaction and accuracy of
the Reuters poll median forecast.  

The decision made on 30.06.2004 was different
from the median forecast. In spite of this the market's
reaction was moderate – bond yields rose at the short
end and remained stable at the long end – which
implies that the survey median did not precisely
reflect the market's expectations. The situation in July
was similar. Although the decision on 28.07.2004 to
raise the base rate by 25 bp. was different from the
median forecast, the market's reaction was
statistically not significant. Again, the median
forecast did not accurately reflect the actual
expectations. The rate cut in June 2005 was deeper
than the survey median expectations. As a result, the
entire yield curve shifted downwards – a usual
reaction. The situation in July was also standard. The
NBP's decision was in line with the survey median
and was followed by virtually no reaction in the bond
market.

From the above case-study analysis it is evident
that it is difficult to assess if the market was surprised
by a monetary policy decision (or any other event) by
comparing survey median forecasts with the actual
central bank’s decision. To properly evaluate the
market's reaction to e.g. central bank’s decisions
several issues have to be kept in mind. First,
expectations of market participants – responsible for
any price action – may differ from expectations of
economists taking part in the survey. Second,
expectations expressed in the survey may change
before the actual outcome (e.g. interest rate decision)
is known. Third, significant information is lost when
the distribution of expectations is characterized by
the median only. The problem is especially important
in case of strongly skewed distributions, when up to
50 per cent of market participants (or analysts) may
be surprised (and trigger a significant price
adjustment) even if the median forecast was
correct24. Fourth, some information about individual
expectations is lost already at the stage of gathering
individual forecasts. Note that the forecast provided
by an economist in a survey is actually a rough
approximation of the probability-weighted mean of
different possible scenarios. The answer to the survey
question is the same when a probability equal 55% or
95% is attached to a given scenario. This should not
be a serious problem for surveys with large number of
participants when individual approximation errors
tend to compensate. In case of smaller surveys
however, this may occasionally result in an apparent

23 Reuters survey conducted each month among market analysts and

concerning the expectations regarding the next NBP’s interest rate decision.

24 It is important to note that given the heterogeneity of expectations all

market participants whose forecasts were different from the actual outcome

are – by definition – surprised. Nevertheless, the market – as a whole – may

be not surprised (no significant price adjustment occurs) if the distribution

of individual expectations is symmetric. 
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consensus of expectations while actually the
probability attached to the median scenario by the
majority of participants may be close to 50%. Fifth,
even if the interest rate decision is in line with
expectations, the market may be surprised by the
central bank’s communiqué after the monetary policy
meeting and react with a price adjustment.

The problems mentioned above have to be kept
in mind when survey based forecasts are evaluated.
However, they do not play a significant role when the
market’s reaction (surprise) is measured with the
proposed time-series based method. Regardless of the
origin or reason of the market’s reaction, the
participants are assumed to be surprised if the price
adjustment after an event is statistically significant in
a given yield curve segment. In all the cases of NBP
decisions described above the proposed test gave
reasonable results, in each case consistent with the
corresponding ex post comments by market
analysts.25 Therefore, despite its limitations which
include the inability to identify and separate the
reasons for price adjustments, the test may be a useful
analytical tool.

4. Summary

The purpose of this paper was to present the most
commonly used parametric and spline-based
methods of yield curve estimation. The basic
concepts related to yield curve modelling were
presented and some up-to-date techniques discussed
in more detail. The class of B-spline models
smoothed with a variable roughness penalty (VRP)
was found most reliable. The B-spline VRP models –
with virtually unlimited calibration capabilities –
offer yield curve estimates with a high degree of
precision, along with an adequate level of

smoothness and stability. Due to their high accuracy
and low co-dependence of results for different curve
segments, VRP model based zero-coupon rate
estimates can be used for precise modelling of yield
curve structure and dynamics. An example of their
application is the method of evaluating the influence
of exogenous factors on financial variables (e.g.
interest rates). The main advantage of the method
proposed is its capability to distinguish between
economically meaningful and random price
movements with a certain degree of statistical
objectivity. Due to a high noise component in
realisations of virtually all financial market
processes, it is usually very difficult to correctly
verify hypotheses concerning the influence of
unexpected events on the market. Empirical analysis
suggests that the proposed test may be a useful
approach to solving problems of this kind.

In the technical part of the paper a modification
of the standard smoothing mechanism for B-spline
models has been proposed. The discrete stabilizer
developed is an extension of the widely known
difference penalty. The method preserves the main
advantages of continuous stabilizers while facilitating
analytical solutions and significantly reducing the
time of computation. 

When interpreting and evaluating results
presented in this paper it has to be kept in mind that
they were based on interest rate estimates from only
one market. The Polish market of treasury bonds is
characterized by moderate liquidity and periodically
reduced efficiency. Given additionally a  relatively
low number of bond series outstanding and gaps in
the time to maturity spectrum of the existing bonds,
this constituted a serious obstacle to a fully reliable
statistical analysis.  Nevertheless, the empirical
results obtained for Poland are consistent with
findings by other authors obtained for other markets,
which supports the reliability of the results presented
in this paper. 
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Figure B  VRP vs Svensson model – 3-month forward rate estimates 
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Figure C  Market's reaction to changes in NBP rates
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