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Abstract
Exchange rates can experience structural changes, switching between periods of high and low volatility, 
which is particularly true with regard to developing countries’ currencies. In this paper we model 
exchange rate daily returns of three Central European currencies against the euro with Hamilton’s 
regime switching model. The goal is to identify periods of high and low volatility, compare the estimates 
of volatility obtained from the model and the persistence of those volatility regimes between countries 
and to check whether associations exist between exchange rates with regard to periods of high and low 
volatility. The results suggest that regime switches in volatility did occur during the 2014–2018 period. 
The EURCZK exchange rate experienced the lowest volatility, while EURHUF stayed within regimes the 
longest. The periods of high and low volatility are not independent between countries, with the strongest 
similarities detected between the EURHUF and EURPLN exchange rates. 
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1 Introduction

Identifying structural changes in exchange rate time series with regard to volatility of those rates poses 
some difficulties. Those difficulties stem from combining two challenges: measuring volatility on the 
financial markets and analysing the dynamics of financial time series, especially exchange rate returns. 

Volatility is an unobservable feature of the financial markets. While it is possible to observe the 
movement of prices of instruments, it is not possible to observe their volatility. Volatility is therefore 
approximated with the help of statistical models. Some measures are static (such as the standard 
deviation and variance) while others are dynamic. The latter is comprised of three groups (Doman, 
Doman 2009): volatility models such as generalized autoregressive conditional heteroskedasticity and 
stochastic volatility, implied volatility models that derive volatility measures from market options prices 
and realized volatility based on high frequency data. While GARCH models specifically were an answer 
to the problem of volatility clusters evident in financial time series data, they still do not sufficiently 
deal with structural changes in the data. The dynamics of exchange rates is particularly complex. Many 
factors influence those rates, some of which (such as market conditions, changes made to the law, 
political decisions) create a climate for exchange rates and other prices on the financial market to either 
increase or decrease in volatility. Those periods of high and low volatility are the evidence of structural 
changes. Structural changes are sometimes mistakenly identified as nonstationary time series or  
a long memory in the data, which leads to misspecifying the model used to fit the data. Failing to take 
structural changes into consideration may lead a researcher to false conclusions, especially with regard 
to data coming from the developing countries. 

Identifying periods of high and low volatility (that can be referred to as volatility regimes) on 
the market is helpful for both the policymakers and financial investors. The former need to be aware 
of the dynamics of volatility for the purpose of stabilizing currency rates, as may be required by the 
monetary policy of the country. Financial market participants can also benefit from the knowledge  
of structural changes in exchange rates. One of the most important characteristics that can influence  
the strategies implemented by investors is the persistence of those high and low volatility periods measured  
by the expected number of days spent in each regime before it changes. 

Wilfing (2009) concludes that, “volatility regime-switching in exchange-rate data is an empirically 
significant phenomenon”. From previous research into the topic we learn that changes in regimes of 
exchange rate volatility for most Central European countries coincide with changes in exchange rate 
system and monetary policy (Frömmel 2006; Doman, Doman 2007). Furthermore, after the switch to 
a floating exchange rate system in Poland, some research suggests that exchange rate volatility has 
remained in a more stable regime, switching into a high volatility regime only for brief periods of time. 
A gap in research exists with regard to some more recent applications of regime switching models and 
the identification of volatility regimes in a post crisis reality of exchange rates. Previous studies also 
established close connections and volatility spillovers between Central European currencies (Kliber 
2010; Bubák, Kočenda, Žikeš 2011). The motivation is therefore to revisit the evidence, focusing on  
a period after the recent global financial crisis. 

The aim of the article is to identify periods of high and low volatility on the Central European 
currency markets using regime switching models to compare the estimates of volatility obtained from 
the model and the persistence of those volatility regimes between countries, and to check whether 
associations exist between exchange rates with regard to periods of high and low volatility. The results 
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are based on three exchange rate time series: EURPLN, EURCZK and EURHUF during the period 
starting in 2014 and ending in 2018. The remainder of the paper is organized as follows. Section 2 
discusses the relevant literature. Section 3 introduces the method used in the paper – the Hamilton 
regime switching model. Section 4 describes the data and section 5 presents the empirical results  
of the estimation. Section 6 concludes. 

2 Literature review

Exchange rate modelling remains at the centre of interest for many researchers. Some of the fields of 
study include the equilibrium exchange rate or monetary exchange rate models. Examples of those 
findings were presented by Wdowiński (2010) and Rubaszek and Serwa (2009). Kelm (2013) provides  
a comprehensive macroeconomic discussion of exchange rate determinants with regard to the EURPLN 
exchange rate. Bilski, Janicka and Konarski (2013) study the relationships between exchange rate 
fluctuations of the Central European currencies and the EURUSD exchange rate. Many of the studies 
mentioned above attempt to shed light on the phenomenon of exchange rate volatility. 

In the face of increasing importance of investigating volatility on the financial markets, questions 
have been raised as to ways of improving the forecasting performance of the traditional GARCH(1,1) 
model. West and Cho (1995) suggested that models of exchange rate return volatility could be improved 
by allowing for structural breaks in the unconditional variance of exchange rate returns. Klaassen 
(2002) suggested improving GARCH volatility forecasts with regime-switching GARCH while Morana 
and Beltratti (2004) proved that superior long-term forecasts can be achieved by modelling long 
memory and structural changes in volatility. Evidence in favour of structural changes in the conditional 
variance has been found by Bollen, Gray and Whaley (2000) as well as Rapach and Strauss (2008). Beine 
and Laurent (2001) used a Markov-switching FIGARCH model to investigate both long memory and 
structural changes to find evidence of strong interaction between structural changes and long memory 
in the field of exchange rate volatility.

Since then, regime switching models have been used to explore structural changes in some exchange 
rates by Doman and Doman (2007), to model and forecast the volatility of exchange rates (Doman 2005; 
Frömmel 2004), to provide a framework for the detection of exchange rate regime switching in the run-
-up to the EMU (Wilfling 2009), or to compare regime switching and policy shifts in CEEC (Frömmel 
2006). Very recently a regime switching model has been used to explore the profitability of carry trades 
by Cho, Han and Lee (2019). 

One way of contextualizing the research presented in the article is by indicating its significance 
to the problem of participation in the Exchange Rate Mechanism II. The Economic and Monetary 
Union currently consists of 19 EU states, with Poland, Hungary and the Czech Republic obliged to 
join the eurozone when they are ready, while the convergence criteria are the set of requirements that 
have to be fulfilled in order for a country to join the EMU. The exchange rate criterion establishes 
that the achievement of a high degree of sustainable convergence is tested through “the observance 
of the normal fluctuation margins provided for by the exchange-rate mechanism of the European 
Monetary System, for at least two years, without devaluing against the euro” (ECB 2012). Biannually, 
the European Central Bank prepares a Convergence Report to assess the compliance of non-eurozone 
countries with the convergence criteria. Over the years considerable research has been involved in all 
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matters concerning the fulfilment of the criterion. Bilski, Janicka and Konarski (2013) approached the 
problem from the direction of currency market convergence, Jurek (2013) proposed a logit analysis 
to reveal what macroeconomic features favour the stabilization of the Central European currencies’ 
exchange rates while Michalczyk (2014) measured the exchange rate volatility to analyse the stability 
of exchange rates. This study also delved into this problem by answering a question of how often 
the Central European currencies’ exchange rates switch from a calm to a volatile period. The answer 
can indicate how difficult it will be for the central banks of those countries to fulfil the convergence 
criterion.

The research can also be put in the context of volatility spillovers, volatility transmission and 
contagion. Analysis of those characteristics and their evolution over time is of great importance, 
influencing the decisions of central bank interventions, international trade, risk management and 
portfolio diversification (Antonakakis 2012). Contagion can be understood as an increase in relationships 
between two markets after a moment of turmoil (Forbes, Rigobon 2002). The phenomenon is often 
studied with the help of static or dynamic correlations (Forbes, Rigobon 2002; Huang, Yang 2003).  
The research has been greatly improved with the introduction of Engle’s dynamic conditional correlation 
model (Engle 2002). Comovement takes place when markets behave in a similar pattern during a calm 
period as well as during a crisis (Forbes, Rigobon 2002), while interdependence can be defined as  
a situation similar to contagion, but in which we cannot distinguish between the infecting market 
and the infected ones. The method of correlating the instances of high and low volatility on the 
market presented in the article is intended to revisit the evidence of high interdependencies between  
the Central European currencies.

Focusing the attention on the Central and Eastern European region, early research has been 
introduced in works by Fedorova and Saleem (2010). Kliber (2010, p. 281) specifically noticed a strong 
connection between the volatility of Polish and Hungarian currencies. Bubák, Kočenda and Žikeš (2011) 
document the existence of volatility spillovers between the Central European exchange rate market, 
finding that in the pre-2008 period relationships in volatility existed between CZK and PLN exchange 
rates while EURHUF remained irresponsive and in the post-2008 period volatilities of the currencies 
reflected mainly their own histories. Hung (2018) focused on the transmission of volatility and volatility 
spillovers in the Central and Eastern European countries. Comprehensive analysis by Kočenda and 
Moravcová (2019) focuses on time varying exchange rate comovements and volatility spillovers using 
DCC models providing proof that during calm periods most of the volatilities on new EU forex markets 
are independent while during distress periods volatility spillovers increase with HUF assuming  
the leading role. 

3 Modelling regime switches in volatility

Volatility is a measure associated with risk and uncertainty connected with sudden changes in the 
price of a financial instrument. The simplest way of measuring volatility is to calculate the variance 
or standard deviation. An example of such an approach can be found in Convergence Reports by 
the European Central Bank and in an article by Michalczyk (2014), which make use of an indicator 
called the exchange rate volatility calculated on the basis of the annualized standard deviation of 
daily percentage changes. Those measures are static, which is their disadvantage. Dynamic measures 
of volatility overcome that disadvantage and can be grouped into three categories. The advantage of 
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implied volatility models comes from deriving volatility from market option prices. Realized volatility 
models take advantage of high-frequency data (Będowska-Sójka, Kliber 2010), which in some cases 
might not be easily available. The last category includes GARCH and stochastic volatility models 
(Będowska-Sójka, Kliber 2010). 

Financial time series (such as price returns) can be characterized by a set of unique statistical 
properties (Doman, Doman 2009). Some of those stylized facts are: a lack of autocorrelation in returns, 
leptokurtic distribution with fat tails, asymmetry of positive and negative returns, dynamically 
changing volatility with high and low volatility clusters, the leverage effect (high negative returns 
are accompanied by higher volatility than the positive returns of the same magnitude), correlation 
between volatility and the volume of trade and structural changes evident in the data. 

With time a family of ARMA and GARCH models has been developed to fit financial time series 
with their specific set of characteristics. ARMA-GARCH models allow the exploration of both linear 
(autocorrelation in returns) and nonlinear (autocorrelation in squared returns) properties found  
in the data. ARMA is used to model a conditional average in returns. The GARCH model was introduced 
by Engle (1982) and developed by Bollerslev (1986) and is used to model the conditional variance  
of the data. The set of equations for ARMA( r, s )-GARCH(p, q)  
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In the conditional variance equation alpha parameters account for shocks in squared returns, 
whereas the beta parameters represent a weighted average of past squared returns. Apart from  
a Gaussian distribution, εt can also be modelled with other distributions: Student’s t, skewed Student 
or GED distribution to account for the fat tails of the high-frequency or skewed financial time-series. 
The GARCH models have been subsequently modified in order to better deal with other issues evident 
in the data such as long memory or the leverage effect creating a family of GARCH models. They also 
create the basis for modelling regime switches in volatility. 

Modelling regime switches can be done with two types of models (Doman, Doman 2009) depending 
on whether the regime switches are governed by levels of an observable variable or whether they are 
governed by a non-observable stochastic process. The first group is comprised of different kinds of 
threshold autoregressive models (TAR), smooth transition autoregressive models (STAR) or ST-GARCH 
models. Out of those, only ST-GARCH models are used to switch regimes in the variance equation. 
The second group of models uses Markov chains to switch between regimes, which means that the 
probability of being in the current regime is dependent only on the previous regime: 
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Markov chains are used in two types of models: Hamilton’s model and MS-AR-GARCH. The latter 
have been developed in papers by Cai (1994), Hamilton and Susmel (1994) and Gray (1996) and allow for 
switching regimes in both the conditional mean and conditional variance equation that uses a classic 
GARCH specification. However this paper focuses on Hamilton’s Markov switching model (Hamilton 
1989; Hamilton, Susmel 1994). The specification of the model for returns of exchange rates (rt) is as 
follows:
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and st is the stochastic process governing the regime switching (with two states:  
1 and 2); 
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Conditional transition probabilities are also estimated:
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The pij probabilities should be non-negative and the following conditions should be observed: 
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. Unconditional probabilities that the switching process will indicate 
either regime 1 or 2 can be calculated with the following formulas:
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Moreover the average time needed for the st process to return to regime i is given by the formula  
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 is the expected duration of stay in regime i. This information 

is of particular interest for a financial investor trying to determine the length of his strategy.  
The estimation is conducted with the maximum likelihood method. ‘Filtered probabilities’ and ‘smoot 
hed probabilities’ are also a by-product of the estimation. These series should give the best indication 
of which regime the system is occupying at each date in the sample. 
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Data description
The raw data set consists of daily EURPLN, EURCZK and EURHUF foreign exchange rates covering 
the period of 2 January 2014 – 31 December 2018 taken from the stooq.pl database. The amount of 
observations provides an adequate sample size for the Hamilton model. Since the raw data present  
a non-stationary process, we use percentage logarithmic returns, calculated with the formula:

rt = 100 * ln( pt /pt–1)

where pt is a price at time t. 

The analysis presented in the article makes use of econometric modelling that was possible with 
the use of OxMetrics7 software environment, as well as Time Series Modelling 4, which is an extension 
for OxMetrics used for linear and nonlinear time series modelling, including Markov-switching models. 
Some of the tests were also conducted with R software environment for statistical computing.

The return series for each exchange rate are depicted in Figures 1–3 in the Appendix. In all three 
series it is possible to notice periods of higher and lower volatility that can be attributed to structural 
changes. The descriptive statistics for the time series are presented in Table 1.

Table 1
Descriptive statistics of FX rates’ returns (2 January 2014 – 31 December 2018)

Min Mean Max Std. dev. Skewness Excess 
kurtosis

EURPLN -1.7417 0.0023398 2.5064 0.37221 0.35559 3.0897

EURHUF -1.624 0.0059715 2.118 0.34936 0.11585 2.7670

EURCZK -1.5959 -0.0051524 0.91821 0.17585 -1.0828 12.082

In all the examined cases the sample mean of the time series is not distinguishably different 
from zero, given the sample standard deviation and the sample excess kurtosis is highly statistically 
significant, while sample skewness reveals a different characteristic for each exchange rate.  
The empirical distribution is skewed to the left for EURCZK returns while EURPLN and EURHUF 
returns’ distributions are skewed to the right. Hence in all cases the returns are not normally distributed, 
which is confirmed by the Jarque-Bera test. The results of the unit root ADF test confirm that all of the 
time series are stationary. In addition, with the Box-Pierce statistic we have detected autocorrelation in 
return series (EURHUF and EURCZK) and squared return series (EURPLN, EURHUF and EURCZK). 
Moreover ARCH tests reveal that all three of the series are characterized by the ARCH effect. 

5 Empirical results

Table 2 presents the estimation results of Hamilton’s model applied to each of the exchange rate series. 
Since the sample mean was close to zero in all time series and estimated m(1) and m(2) parameters 
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were statistically insignificant, a decision was made to re-estimate the models without a constant in the 
conditional mean equation. A decision was made to use the same model for all three time series with 
the only difference being a different distribution fitted to EURPLN returns. The decision was made 
based on information criteria and statistical significance of the parameters of the model. 

Table 2
Parameters of the regime switching model for FX rate returns

Variable 
distribution

(1) (2) (3)

EURPLN EURHUF EURCZK

Student’s t normal normal

DF 12.6636 (6.1341)

a1 -0.04664 (0.02961) -0.03403 (0.03096) -0.18326 (0.03772)

ω(1) 0.06021 (0.0059) 0.04855 (0.0041) 0.03299 (0.0044)

ω(2) 0.20353 (0.0239) 0.17954 (0.0179) 0.00077 (0.0001)

α1 0.10648 (0.04755) 0.07753 (0.04601) 0.36928 (0.09554)

Conditional transition probabilities pij

Regime No. 1 2 1 2 1 2

1 0.98604 0.019658 0.99464 0.006472 0.98054 0.038584

2 0.013956 0.98034 0.005357 0.99353 0.019459 0.96142

Notes: 
Estimated parameters together with standard errors (in parentheses) are reported. Normal distribution or Student’s t 
distribution with DF (degrees of freedom) reported. 

The EURPLN returns time series can be characterized by two distinct regimes in volatility. Regime 
one represents a period of lower volatility. The second regime can be described by volatility that is 
more than three times higher than in regime one. Both regimes are stable, which means that the 
probabilities of staying in the same regime are high (close to 1), while the probabilities of transitioning 
to the other regime are low. The estimated number of degrees of freedom in regard to Student’s t 
distribution is relatively high, meaning it is more similar to the normal distribution, and therefore 
contains fewer outliers (the tails are less heavy). The EURHUF returns can also be described by  
a model with two regimes in volatility. In the second regime the volatility is nearly four times 
higher in the first regime. The estimated conditional probabilities prove that the regimes are stable.  
The same can be said about the EURCZK time series, although the regimes are flipped with the volatility  
in the first regime being over 42 times higher than in the second regime. The differences between 
regimes are most evident here. 

Additional characteristics of the estimated models are presented in Table 3. By comparing the 
unconditional variances for each regime in each model it is evident that EURCZK is the least volatile 
exchange rate of the three. The EURPLN and EURHUF exchange rates are on par with each other, 
although the zloty exchange rate can be characterized with a slightly higher volatility in both regimes. 
Unconditional variances of the EURPLN exchange rate are much lower than those calculated by 
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Doman (2005) for the 2000–2004 period, which supports the commonly expressed view of a gradual 
decrease in EURPLN volatility over the years (Michalczyk 2014).

According to the unconditional probabilities, the EURCZK exchange rate stayed in the lower 
volatility regime with a higher probability (0.66) than in the higher volatility regime (0.34), which can 
be interpreted as proof of a much more stable currency. The EURPLN and EURHUF exchange rates 
behaved in the opposite way. Staying in the higher volatility regime was more likely for both the zloty 
(0.58) and forint (0.55) exchange rates against the euro. 

Table 3
Additional characteristics of the estimated models (expected duration of stay, average time needed to return, 
unconditional regime probabilities and unconditional variances of each regime)

Variable
EURPLN EURHUF EURCZK

(1) (2) (3)

d(1) 50.87 154.51 25.92

d(2) 71.65 186.69 51.39

mtr(1) 2.41 2.21 2.98

mtr(2) 1.71 1.83 1.50

P(st = 1) 0.42 0.45 0.34

P(st = 2) 0.58 0.55 0.66

σ2(1) 0.067385 0.05263 0.052305

σ2(2) 0.213691 0.19463 0.001221

Finally, by looking at the expected duration of stay in each regime it is possible to ascertain how 
often the currency switches form periods of high volatility to low volatility and answer how long an 
investor can expect those conditions to last. The structural changes are rarest in the EURHUF exchange 
rate. The periods of high volatility are expected to last approx. 187 days, while the periods of low 
volatility last approx. 155 days. The regime stays are much shorter in the case of EURPLN exchange 
rate. The periods of high volatility are expected to last approx. 72 days, while periods of lower volatility 
last approx. 51 days. The Czech koruna exchange rate changes regimes most often. The periods of 
high volatility are expected to last approx. 26 days, while the periods of low volatility are longer, 
lasting approx. 51 days. A previous study by Doman (2005) suggested that the EURPLN exchange rate 
experiences only very brief (approx. 1 day) increases in volatility, while the calm periods last approx. 140 
days. The research was based upon the data ranging from 2000 to 2004, and since then Polish financial 
markets have become much more globalized with a significant increase in short-term foreign capital. 
The influence of global sentiments can be responsible for that change. 
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The models also allowed the estimation of smoothed conditional probabilities, which give the 
best indication of which regime the system is occupying at each date in the sample. If the smoothed 
probability at a given day is higher than 0.5, one can reasonably assume that the day’s exchange 
rate return is generated by the first regime’s model, while probability lower than 0.5 signifies the 
second regime as the governing process. With that approximation it is possible to divide the research 
period into subperiods of higher and lower volatility. Figures 4 to 6 in the Appendix present those 
subperiods as a background with conditional variances estimated by the model and squared returns 
as an approximation of realized volatility. By comparing squared returns with the estimated variance 
and the highlighted periods it is evident that the model correctly identified periods of higher and 
lower volatility and therefore can indeed be used to adequately estimate volatility on the Central 
European currency markets. 

Table A.1, which divides the period of analysis in this paper into subperiods of high and low 
volatility for each exchange rate based on the previous calculations, is available in the Appendix,  
as well as Table A.2, which represents the percentage of days with high volatility in each quarter  
for each exchange rate.

Previous research suggested that exchange rate system and monetary policy changes are indeed 
reflected by changes in volatility regimes as modelled by Markov switching models. Doman and 
Doman (2007) attributed the structural changes in the EURPLN exchange rate to changes in the 
exchange rate regime. Frömmel (2006) noted that the results are most pronounced for Hungary and 
Poland as well as that an increase in the flexibility of the exchange rate regime leads to an increase 
in exchange rate volatility. Even though such drastic changes have not been common during the 
period covered in this study, an important decision was announced in April 2017 by the Czech 
National Bank. It finished its 3.5-year commitment to intervene on the foreign exchange market and 
maintain the exchange rate close to CZK 27 to the euro. This coincides with a change from a calm to 
a high volatility period as can be seen on Figure 6. The structural break in EURCZK exchange rate 
can therefore be explained by the change in the monetary policy environment and is entirely in line 
with previous research. However, it is important to note that structural breaks can also be detected in 
exchange rates that have not been subject to exchange rate system changes – EURPLN and EURHUF. 
Floating exchange rate regimes expose those currencies to a variety of short-term factors influencing 
volatility: changing risk premiums, short-term capital flows and the effects of news announcements, 
to name a few.

The next step is to check for any associations, dependencies or relationships between the 
currencies in regard to their periods of high and low volatility. Three time series were constructed 
consisting of only binary data, with “1” meaning that on that day the currency was in a period of low 
volatility and “0” meaning that the currency on that day was governed by the high volatility regime. 
This allowed for three 2×2 contingency tables to be constructed that became a basis for employing 
a Chi-squared test of independence for two discrete binary variables. The Pearson’s Chi-squared 
test can answer whether the distribution of high and low volatility for one currency is independent  
of the distribution of periods of high and low volatility for the second currency. 
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Table 4
Pearson’s Chi-squared test with Yates’ continuity correction results for each pair of variables

EURPLN EURHUF EURCZK

EURPLN

EURHUF 96.974
(p < 2.2e-16)

EURCZK 10.569
(p = 0.00115)

12.98
(p = 0.0003149)

Note: Chi-squared statistic reported along with p-values in brackets.

The results of Pearson’s Chi-squared test with Yates’ continuity correction are reported in Table 4. 
The null hypothesis of independence is rejected in favour of the alternative in all three cases. Therefore 
a conclusion can be reached that relationships in fact exist between all three pairs of exchange rates 
with regard to the periods of high and low volatility. To confirm these findings, Fisher’s exact test was 
also conducted. Fisher’s exact test also uses independence as the null hypothesis but makes use of odds 
ratios as the basis of the test. The results of this test confirm the previous findings. There is enough 
evidence to reject the null hypothesis that periods of high and low volatility in each pair of exchange 
rates are independent of one another.

Table 5
Fisher’s exact test results for each pair of variables

EURPLN EURHUF EURCZK

EURPLN

EURHUF 3.151431
(p < 2.2e-16)

EURCZK 0.6759588
(p = 0.001055)

0.6759588
(p = 0.001055)

Note: Odds ratios reported along with p-values in brackets.

Determining the exact nature of the relationship requires evaluating the similarity between 
binary variables. A widely used measure of association for two binary variables is the phi coefficient 
introduced by Karl Pearson, which is similar to the Pearson correlation coefficient in its interpretation. 
The phi coefficient varies from -1 to 1 with -1 and 1 indicating perfect associations. The results of the 
calculation of the phi coefficient for each pair of variables are reported in Table 6. Two other measures 
of similarity in binary data were calculated to confirm the findings: Yule’s binary similarity coefficient 
(which also ranges from -1 to 1) and Jaccard’s binary similarity coefficient (which ranges from 0 to 1). 
The results for each pair of variables are reported in Tables 7 and 8.
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Table 6
Phi coefficient for each pair of variables

EURPLN EURHUF EURCZK

EURPLN 1

EURHUF 0.2758554 1

EURCZK -0.0922075 0.1019855 1

Table 7
Yule’s binary similarity coefficient for each pair of variables

EURPLN EURHUF EURCZK

EURPLN 1

EURHUF 0.5185821 1

EURCZK -0.1935092 0.2132381 1

Table 8
Jaccard’s binary similarity coefficient for each pair of variables

EURPLN EURHUF EURCZK

EURPLN 1

EURHUF 0.4973147 1

EURCZK 0.2351097 0.3014354 1

All three coefficients support the same general conclusions. The phi coefficient informs us that 
the similarity between the binary variables representing periods of high and low volatility is strongest 
(however still weak) between the EURPLN and EURHUF exchange rates and weakest between the 
EURPLN and EURCZK exchange rates. In the case of EURPLN and EURCZK, the variables seem to be 
negatively associated, meaning periods of high volatility for one exchange rate coincide with periods 
of calmness for the other. However, it is important to note that the strength of this relationship is 
very weak. The Yule’s coefficient makes all of the similarities appear stronger than measured with 
Pearson’s phi, but the results support the same conclusions. Jaccard’s coefficient also suggests that the 
similarity between periods of high and low volatility is most pronounced when comparing EURPLN 
and EURHUF exchange rates with nearly half of the distance between the binary variables covered. 
The similarity is less pronounced between EURHUF and EURCZK or EURPLN and EURCZK. 

The results can be interpreted as evidence of volatility spillover between the Polish and Hungarian 
currencies that does not constitute contagion but rather comovement or interdependence, since the 
significant level of market correlation suggests strong linkages between the two economies that exist in 
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all states of the world – both calm and volatile (Forbes, Rigobon 2002). Unidirectional volatility spillover 
between these currencies has also been found by Kliber (2010, p. 295), Fedorova and Saleem (2010) and 
Bubák, Kočenda and Žikeš (2011), while a bidirectional volatility spillover as well as high correlation of 
exchange rates, both pre and post 2008 global crisis, has been documented by Hung (2018). However 
Fedorova and Saleem (2010) have also found other evidence of integration of Central European markets 
within the region, such as volatility spillovers between the Czech and Hungarian or Polish and Czech 
currencies. While the results of independence tests offer some limited support to the idea of close 
integration of these three currency markets, further measures of association between calm and volatile 
periods (with the exception of Poland and Hungary) do not seem to agree. Some understanding can be 
gained by further results given by Bubák, Kočenda and Žikeš (2011) and Hung (2018). Both studies agree 
that foreign exchange markets in Central European countries became more independent during and 
after the global financial crisis, with exchange rate volatilities mostly reflecting their own history and 
correlations between them decreasing in comparison to the pre-crisis period. Kočenda and Moravcová 
(2019) also note that during calm periods most of the volatilities of Central European currencies are 
due to each currency’s own history, which would explain the lack of significant correlations (with one 
exception) with regard to high and low volatility regimes. However, they also find that during distress 
periods volatility spillovers among currencies increase substantially and HUF assumes a leading role. In 
that regard, the results by Kočenda and Moravcová (2019) differ from Bubák, Kočenda and Žikeš (2011).

6 Conclusions

The aim of the article was to identify periods of high and low volatility on the Central European 
currency markets using regime switching models, to compare the estimates of volatility obtained from 
the model and the persistence of those volatility regimes between countries and to check whether 
associations exist between exchange rates with regard to periods of high and low volatility.

We estimated Hamilton’s regime switching model for three exchange rates of Central European 
currencies vis-à-vis the euro and note that their dynamics are well suited to this kind of model.  
The EURPLN exchange rate experienced periods of high volatility mostly in 2015 and 2016, for 
EURHUF the volatile period stretched between the beginning of 2014 till March 2016 and the EURCZK 
exchange rate was relatively volatile throughout 2014 and 2015 but also 2017 and 2018. However, by 
comparing the unconditional variances for each regime in each model it becomes evident that EURCZK 
is the least volatile exchange rate of the three and also more likely to stay in the lower volatility regime 
than in the higher volatility regime. On the whole it can be noted that the period from the beginning 
of 2014 until July 2016 was more volatile for all three currencies, while the period of mid 2016 till the 
end of 2018 was relatively calm (with the exception of the middle of 2018). 

The persistence of higher and lower volatility periods differs between exchange rates as well.  
The most persistent exchange rate is the EURHUF, with expected time of staying within a regime 
estimated as 5–6 months. The EURPLN and EURCZK exchange rates enjoy the same regime for approx. 
1–2 months. This kind of regime switch can have extreme repercussions for a central bank expected to 
stabilize an exchange rate. It is also important to note that similarities between the periods of high and 
low volatility between the countries do exist up to a certain degree. The currencies’ volatility regimes 
are not independent of each other, which suggests a common component driving and influencing the 
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volatility of Central European currencies. EURPLN and EURHUF appear to have at least a moderate 
degree of similarity with regard to the volatility regime, while EURCZK behaves more independently 
of EURPLN and EURHUF. 

Policymakers need to be aware of the possibility of structural breaks happening in the exchange 
rate in reaction to monetary policy shifts, as evidenced by the volatility regime switch following Czech 
National Bank’s decision in April of 2017. Regime switches are, however, not only characteristic of 
events such as exchange rate system changes, but can also be a useful tool for analysing the patterns 
evident in recent exchange rate behaviour. The higher frequency of volatility switches in EURPLN and 
EURCZK exposes the vulnerabilities of those currencies to market “mood swings”. That will make it 
more challenging to stabilize those exchange rates in the ERM II. The vulnerability of EURPLN can 
also be attributed to an increased association between periods of high and low volatility found in the 
data. While the results of independence tests confirm a certain degree of integration or convergence 
happening between Central European currencies, it can be seen as a risk factor when it is reflected 
in contagion between the markets. The findings support the idea of comovement or interdependence 
between Polish and Hungarian exchange rates vis-à-vis the euro, but otherwise periods of calmness and 
high volatility on the currency markets seem to be rather independent in recent years. While it should 
make the process of stabilizing the EURCZK exchange rate easier than EURHUF and EURPLN, it does 
not preclude an increase in volatility spillovers during a crisis, as suggested by Kočenda and Moravcová 
(2019). The paper does not include sensitivity tests as well as a comparison of findings over a longer time 
horizon. This remains, however, a future research topic.1
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Appendix

Figure  1
Daily EURPLN returns
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Figure 2
Daily EURHUF returns
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Figure 3
Daily EURCZK returns
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Figure 4
The conditional variance estimated by the model and squared returns of EURPLN exchange rate presented on 
the background of regime 1 and 2 subperiods
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Figure 5
The conditional variance estimated by the model and squared returns of EURHUF exchange rate presented  
on the background of regime 1 and 2 subperiods
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Figure 6
The conditional variance estimated by the model and squared returns of EURCZK exchange rate presented  
on the background of regime 1 and 2 subperiods
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Table A.1
Periods of high and low volatility of exchange rates extracted from the models

High volatility Low volatility

EURPLN

22.01.2014–12.03.2014 
15.12.2014–03.09.2015 
21.10.2015–26.10.2015 
01.12.2015–21.07.2016 
31.10.2016–13.12.2016 
19.04.2017–03.07.2017 
23.04.2018–25.07.2018 

06.01.2014–21.01.2014 
13.03.2014–12.12.2014 
04.09.2015–20.10.2015 
27.10.2015–30.11.2015 
22.07.2016–28.10.2016 
14.12.2016–18.04.2017 
04.07.2017–20.04.2018 
26.07.2018–31.12.2018

EURHUF

14.01.2014–18.03.2016 
16.06.2016–01.07.2016 
29.05.2018–24.08.2018

06.01.2014–13.01.2014 
21.03.2016–15.06.2016 
04.07.2016–25.05.2018 
27.08.2018–31.08.2018

EURCZK

06.01.2014–21.02.2014 
17.03.2014–01.04.2014 
08.05.2014–19.06.2014 
21.07.2014–02.12.2014 
16.12.2014–03.08.2015 
26.08.2015–02.09.2015 
08.09.2015–19.10.2015 
22.10.2015–23.10.2015 
03.11.2015–06.11.2015 
04.02.2016–09.02.2016 
22.02.2016–24.02.2016 
22.06.2016–05.07.2016 
30.03.2017–31.12.2018

24.02.2014–14.03.2014 
02.04.2014–07.05.2014 
20.06.2014–18.07.2014 
03.12.2014–15.12.2014 
04.08.2015–25.08.2015 
03.09.2015–07.09.2015 
20.10.2015–21.10.2015 
26.10.2015–02.11.2015 
09.11.2015–03.02.2016 
10.02.2016–19.02.2016 
25.02.2016–21.06.2016 
06.07.2016–29.03.2017 



Identifying structural changes and associations in exchange rates... 89

Table A.2
Percentage of days of high volatility in each quarter for each exchange rate (%)

EURPLN

Q1 Q2 Q3 Q4

2014 59.0 0.0 0.0 18.5

2015 100.0 100.0 71.2 40.0

2016 100.0 100.0 22.7 50.0

2017 0.0 81.3 1.5 0.0

2018 0.0 76.9 27.7 0.0

EURHUF

Q1 Q2 Q3 Q4

2014 90.2 100.0 100.0 100.0

2015 100.0 100.0 100.0 100.0

2016 87.3 16.9 1.5 0.0

2017 0.0 0.0 0.0 0.0

2018 0.0 36.9 61.5 0.0

EURCZK

Q1 Q2 Q3 Q4

2014 75.4 50.8 78.8 86.2

2015 100.0 100.0 71.2 29.2

2016 11.1 10.8 4.5 0.0

2017 3.1 100.0 100.0 100.0

2018 100.0 100.0 100.0 100.0
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Identyfikacja zmian strukturalnych i zależności pomiędzy kursami walut 
środkowoeuropejskich za pomocą modeli przełącznikowych typu Markowa

Kursy walutowe mogą podlegać zmianom strukturalnym, doświadczając okresów wysokiej i niskiej 
zmienności (tzw. reżimów zmienności). Jest to szczególnie widoczne w przypadku kursów walut krajów 
rozwijających się. Celem artykułu jest identyfikacja okresów wysokiej i niskiej zmienności na rynkach 
walut z centralnej Europy za pomocą modelu przełącznikowego Hamiltona, porównanie uzyskanych 
szacunków zmienności i trwałości zidentyfikowanych reżimów zmienności dla poszczególnych kursów 
oraz sprawdzenie, czy pośród kursów istnieją zależności w występowaniu okresów wysokiej i niskiej 
zmienności. Wyniki oparte są na trzech szeregach czasowych kursów walut: EURPLN, EURCZK  
i EURHUF w okresie między 2014 a 2018 r. Wybór modelu przełącznikowego Hamiltona podyktowany 
był możliwością jego wykorzystania do wykrywania zmian strukturalnych w zmienności notowań.

Dla każdego z szeregów kursów walut środkowoeuropejskich względem euro oszacowany został 
model przełącznikowy Hamiltona, który dobrze odzwierciedla dynamikę tych kursów. Zaobserwowano, 
że kurs EURPLN doświadczył okresu wysokiej zmienności głównie w 2015 i 2016 r.; kurs EURHUF 
cechował się wysoką zmiennością między początkiem 2014 r. a marcem 2016 r., a kurs EURCZK 
był stosunkowo niestabilny w latach 2014, 2015, 2017 i 2018. Jednakże, porównując bezwarunkowe 
wariancje obu reżimów dla wszystkich modeli, to kurs EURCZK wykazuje się najniższą zmiennością 
spośród badanych kursów, a ponadto cechuje się większym prawdopodobieństwem pozostania  
w reżimie o niższej zmienności niż w reżimie o wyższej zmienności. Trwałość reżimów również różni 
się między oszacowanymi modelami. Dla kursu EURHUF przewidywany czas pozostawania w ramach 
danego reżimu oszacowany został na ok. 5–6 miesięcy, podczas gdy kursy EURPLN i EURCZK podlegają 
temu samemu reżimowi przez ok. 1–2 miesiące. Występowanie reżimów zmienności nie jest od siebie 
niezależne, co wskazuje na występowanie wspólnego czynnika wpływającego na zmienność kursów 
walut krajów środkowoeuropejskich wobec euro. Powiązanie między reżimami w stopniu co najmniej 
umiarkowanym widoczne jest dla kursów EURHUF i EURPLN, natomiast kurs EURCZK zachowuje się 
bardziej niezależnie. 

Decydenci powinni zdawać sobie sprawę z możliwości wystąpienia zmian strukturalnych 
zachodzących w kursie walutowym w reakcji np. na nagłe zmiany w polityce pieniężnej, czego 
przykładem może być zmiana reżimu zmienności, która nastąpiła po decyzji Czeskiego Banku 
Narodowego w kwietniu 2017 r. Zmiany systemu walutowego to niejedyna przyczyna zmiany 
strukturalnej. Zmiany reżimu zmienności mogą również posłużyć do analizy wzorców widocznych 
w zachowaniu kursów walutowych. Wysoka częstotliwość zmian reżimu kursów EURPLN i EURCZK 
ujawnia podatność tych walut na „wahania nastroju” na rynku. Jest to czynnik utrudniający stabilizację 
kursu w ramach mechanizmu ERM II. Za czynnik ryzyka, szczególnie gdy ujawnia się to pod postacią 
zarażania na rynkach walutowych, można postrzegać wyniki testów niezależności, które potwierdzają 
pewien stopień integracji między walutami Europy Środkowej. Zależności określane jako comovement 
lub interdependence pomiędzy kursami EURPLN i EURHUF znajdują potwierdzenie w wynikach 
przeprowadzonych badań. Chociaż proces stabilizowania EURCZK powinien być łatwiejszy, nie można 
wykluczyć wystąpienia w przyszłości efektu wzrostu powiązań w zakresie zmienności (volatility 
spillovers) podczas kryzysu, jak sugerują Kočenda i Moravcová (2019). 


