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1. Introduction

The aggregate production function, mapping the stocks of aggregate inputs onto the aggregate output,
is frequently assumed to take simple forms such as the constantreturns-to-scale (CRS) Cobb-Douglas
function. Such postulates can be found not only in the theoretical literature — models of long-run
growth, business cycles, etc. — but also in empirical studies. The latter category includes, among others,
the growing development accounting literature (see e.g. Hall, Jones 1999; Caselli 2005). The obvious
advantage of making such simplifying assumptions lies with their analytical tractability. The CRS
Cobb-Douglas function is also in partial agreement with a few broad patterns observed in macro data,
such as Kaldor’s stylized facts. On the other hand, substantial empirical discrepancies in several other
areas have been documented, implying that such overly restrictive functional requirements should in
fact be relaxed. In particular, factor shares have been documented to exhibit both shortrun fluctuations
and prolonged trends (e.g. McAdam, Willman 2013; Karabarbounis, Neiman 2014), whereas elasticities
of substitution have been shown to be generally non-unitary (e.g. Duffy, Papageorgiou 2000; Caselli,
Coleman 2006; Klump, McAdam, Willman 2007; Chirinko 2008; Ledn-Ledesma, McAdam, Willman
2010).

From a positive viewpoint, there is however no consensus on the preferred functional form of the
aggregate (country-level) production function. The principal reason is that estimation of aggregate
production functions is notoriously difficult due to multiple empirical issues: measurement uncertainty
of input and output aggregates such as GDP, physical capital and human capital, problems with
comparability across countries and time, endogeneity of input variables, just to name a few. Yet
another important issue, and one that we carefully address in the current paper, is that even though
the aggregate production function is a technological concept, one of a technical relationship between
inputs and outputs, in reality, country-level productivity may also be affected by non-technological
variables such as taxation, presence of various barriers to doing business (corruption, crime, complicated
bureaucratic procedures, etc.), sectoral composition of production, labour market institutions, or
financial constraints. Hence, to obtain reliable estimates of the technological production function
itself, one ought to control for differences in these institutional conditions across countries and time.
We tackle this issue by taking the World Technology Frontier approach.

The objective of the current paper is to estimate the aggregate, country-level production function
as a relationship between countries’ aggregate inputs and their maximum attainable output, computed
on the basis of the World Technology Frontier (WTF hereafter) — where the WTF is the best-practice
frontier at each moment in time. By doing so, we are able to single out technological aspects of the
production processes from their institutional background, at least up to a multiplicative constant.
Such estimates of the aggregate production function will be then used as a convenient starting
point for further analyses, aimed at deriving this function’s crucial characteristics, and discussing
which parametric form agrees most with the available empirical evidence. As crucial features of the
estimated aggregate production function, we shall investigate its implications for the cross-country
distribution of technical inefficiency, the pattern of dependence of its (variable) partial elasticities on
factor endowments, (variable) returns-to-scale properties, and its implied (Morishima and Allen-Uzawa)
elasticities of substitution.

We estimate the aggregate production function with two alternative methods. First, we apply the
nonparametric Data Envelopment Analysis (DEA) approach (for applications in macroeconomics, see
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e.g. Fare et al. 1994; Kumar, Russell 2002; Henderson, Russell 2005; Jerzmanowski 2007; Badunenko,
Henderson, Zelenyuk 2008; Growiec 2012b), augmented with a bootstrap procedure which enables us
to adjust for the bias of DEA efficiency estimates as well as to compute standard errors and confidence
intervals for these estimates. The key advantage of this first approach is that it does not require one
to make any a priori assumptions on the functional form of the aggregate production function — and
yields testable predictions instead. Unfortunately, since the DEA approach is based on piecewise linear
approximations of the true aggregate production function, it is not suited to providing predictions on
the function’s curvature features such as the elasticities of substitution.

Second, we also apply the Stochastic Frontier Analysis (SFA) methodology (for applications in
macroeconomics, see e.g. Koop, Osiewalski, Steel 1999; 2000 and Bos et al. 2010; see Kumbhakar, Lovell
2000 for general reference) which allows us to estimate the production function directly, under certain
predefined (parametric) functional specifications. Such parametric models are estimated with Bayesian
techniques, particularly well-suited to production function estimation due to their relative robustness
under collinearity and measurement error. The advantage of the SFA approach is that it allows to
test several parametric specifications directly. It is also useful for drawing precise conclusions on the
aggregate production function’s elasticities of substitution. SFA allows us to estimate the production
function directly, but even if the estimated parametric function is misspecified when taken at face value,
sometimes it can still be considered as a reasonable approximation of the true aggregate production
function, sufficiently good within some range of input combinations. The translog production function
is indeed frequently viewed this way, i.e. as a local second-order Taylor approximation of an arbitrary
function.

The current study provides a systematic assessment of the shape of aggregate, country-level
production functions based on a comparison of nonparametric and parametric estimates of the WTF.
Our baseline interpretation of identified discrepancies between the DEA and SFA is that (bootstrap-
-augmented) DEA estimates of the frontier may be imprecise due to their potentially low efficiency but
should, in principle, capture the true characteristics of the production process without systematic biases;
its parametric SFA approximation, on the other hand, is more robust to random noise and the impact of
nuisance variables because of being based on a more parsimonious model, but may be fundamentally
misspecified. The importance of carrying out such a study follows from the fact that even though
investigations based on different a priori assumptions on the shape of the aggregate production tend
to produce conflicting implications, there is still a clear disconnect between the Cobb-Douglas-, CES-,
DEA-, and SFA-based literatures nevertheless. The current paper, along with the monograph by Growiec
(2012a) which reproduces some of its results, is thus among the first attempts to bridge this gap.

An earlier draft of the current article, under the same title, has been circulated in 2011 as NBP
Working Paper No. 102 (Growiec et al. 2011). Some of the results of (the earlier, significantly longer
version of) the current article have been reproduced in the monograph by Growiec (2012a). In
particular, the current Table 1 has been reproduced as Table 5.7, Table 2 — split into Tables 5.10 and 5.12,
Table 3 - split into Tables 5.11 and 5.13, Table 4 - reproduced as Table 5.16, and Table 5 — as Table 5.17.
Given this overlap, it is critical to note that the current article contains original research results whereas
the quoted monograph only reproduces them, framing them in a different, somewhat broader context.
All this has been acknowledged in Growiec (2012a). As compared to the quoted NBP Working Paper No.
102, the current revision features a streamlined, abridged presentation of the methodology and results
as well as contains a range of new interpretations and additional literature references.
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The remainder of the paper is structured as follows. Section 2 presents the dataset and reviews the
alternative methodologies. Section 3 discusses the properties of the aggregate, country-level production
function, inferred from our DEA- and SFA-based estimates of the WTE. Section 4 concludes. For
qualifications and extensions, please consult the working paper version of this article, Growiec et al.
(2011).

2. Data and methodology
2.1. Data sources and the construction of variables

The macroeconomic dataset used in the current study covers 19 highly developed OECD economies in
the period 1970-2004. The output variable Y, (henceforth, i indexes countries and ¢ denotes the year)
is GDP and the input variables are the aggregate stocks of physical capital, human capital, subdivided
into unskilled and skilled labour, and (for auxiliary purposes only) the “raw” number of employees.

International, annual data on GDP and GDP per worker as well as the total number of workers in
1970-2004 have been taken from the Total Economy Database, developed by the Conference Board and
Groningen Growth and Development Data Centre (GGDC). The unit of measurement is the US dollar,
converted to constant prices as of year 2008 using updated 2005 EKS PPPs.!

Physical capital stocks K, have been constructed using the perpetual inventory method (cf. Caselli
2005). We have used country-level investment shares from the Penn World Table 6.2 (cf. Heston,
Summers, Aten 2006). Following Caselli (2005), we also assumed an annual capital depreciation rate
of 6%.

Country-level human capital data have been taken from de la Fuente and Doménech (2006).
The raw variables provided in this contribution are shares of population aged 25 or above having
completed primary, some secondary, secondary, some tertiary, tertiary, or postgraduate education.
The considered dataset is of 5-year frequency only and ends in 1995. Nevertheless, the de la Fuente-
-Doménech dataset has been given priority among all possible education attainment databases due to
its presumed superior quality. The original de la Fuente-Doménech data have then been extrapolated
forward in the time-series dimension until the year 2000 using Cohen and Soto (2007) schooling
data as a predictor for the trends. Furthermore, the human capital data have been interpolated to
all intermediate years as well, for human capital variables are, in general, very persistent and not
susceptible to business cycle variations.

Human capital aggregates have been constructed from these educational attainment data using
the Mincerian exponential formula with a concave exponent, following Hall and Jones (1999), and more
directly, Caselli (2005) and Growiec (2012b):

P(s . ) &(s ;)
U _ J,it S _ JHit
Hit - ij,it e Lit’ Hit - ij,it e Lit 1)

jeSU jESS

1 The Conference Board and Groningen Growth and Development Centre, Total Economy Database, January 2009 http:/
www.conference-board.org/data/economydatabase/.
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where S, is the set of groups of people who completed less than 12 years of education (less than
elementary, elementary, less than secondary), S, is the set of groups of people who completed 12 years
of education or more (secondary, less than college, college or more), Y, captures the share of j-th
education group in total working-age population of the given country, s, Tepresents years of schooling
in j- th education group (cf. de la Fuente, Doménech 2006), L,, is the total number of workers, and ¢(s)
is a concave piecewise linear function:

0.134s s<4
b (s) = 0.134-4+0.101(s — 4) s€[4,8) )
0.134-4+0.101-4+0.068(s—8) s=8

The overall human capital stock may be computed as the sum of unskilled and skilled labour:
H,=H; +H,. The cutoff point of 12 years of schooling, delineating unskilled and skilled labour,
seems adequate for the relatively highly developed OECD economies in our sample, though it might
be set too high if developed economies were to be considered as well (cf. Caselli, Coleman 2006). We
have, however, allowed these two types of labour to be imperfectly substitutable and thus enter the
production function separately. The “perfect substitution” case where only total human capital matters
for production (and its distribution between unskilled and skilled labour has no impact whatsoever) is
an interesting special case of our generalized formulation. The data do not support this assumption.

Should significant outliers be found within our sample, indicating insufficient data quality, the
final results are likely to be biased. Additonally, outliers could also indicate an underlying problem
of discrepancies bewteen the data-generating process and the estimated specification. Our approach
tackles this possibility as well. The same problem could also appear due to business-cycle fluctuations,
especially that we only measure the total stocks of physical and human capital in the considered
countries, without taking account of their utilization rates which vary significantly across the cycle.
Avoiding the impact of short and medium-term disturbances appears extremely important in an
aggregate production function analysis such as ours. Thus, the Hodrick and Prescott (1997) filter with
the usual smoothing parameter (1 = 6.25 for annual data) has been applied to all our data to exclude
the outliers and high-frequency cyclical variation present in the data.

Unfortunately, when employing the aforementioned panel dataset in parametric analyses such as
the SFA, we face a critical problem. Namely, due to the strong multi-collinearity present in the time
domain of our smoothed time series, the parametric, Bayesian estimation procedures applied here
might lead to uninformative, uninterpretable results. To avoid this unwelcome outcome, we have
decided to narrow down the time dimension of the dataset used in our SFA estimations, limiting
ourselves to data covering entire decades instead of single years. The presentation of our results takes
into account the fact that our DEA results have been obtained for the whole dataset and the SFA
results for its subset only. We concentrate on cross-sectional comparisons or on the inferred “time-
-less” characteristics such as the slope and curvature of the aggregate production function, and do not
compare goodness-of-fit statistics if they are computed on the basis of different datasets.
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2.2. Methodology

The objective of the current paper is to draw conclusions on the shape of the aggregate, country-level
production function, based on two types of estimates of the World Technology Frontier: deterministic
DEA-based ones, augmented with the stochastic, nonparametric Simar-Wilson bootstrap, and
parametric SFA-based ones, computed using Bayesian procedures.

Data Envelopment Analysis

The idea behind DEA is to construct the best-practice production function as a convex hull of production
techniques (input-output configurations) used in countries present in the data, assuming that there is
full factor utilization and no measurement error. The production function is then inferred indirectly
as a fragment of the boundary of this convex hull for which output is maximized given inputs. More
precisely, for each observation i=1,2,..../ and ¢=1,2,...,T, output y, is decomposed as:

yir - Eitf; (xit ) (3)

i.e. into a product of the maximum attainable output given inputs y, = f,(x,) and the “efficiency
index”, i.e. the Shephard distance function £, € (0, 1]. The efficiency index E, measures (vertical) dis-
tance to the technology frontier, while the frontier itself is computed nonparametrically as y, = f,(x, ).

Unless indicated otherwise, the vector of inputs in DEA will be x, = (K,,H_ ,H ). Formally, the
(output-based) deterministic DEA method is a linear programming technique allowing one to find the
Shephard distance function £, for each unit j =1,2,....,/ and given ¢€{1,2,...,T} in the sample such
that its reciprocal — the Debreu-Farrell efficiency index Qﬂ - is maximized subject to a series of feasibility

constraints (cf. Fried, Lovell, Schmidt 1993):

max 0,

105y s

t 1
S.t. Ojt yjt = Zzliryir
=1 i=l

I
zzi[le,ir =X
=1 i=1 )

(1
sz’ir Xoir =Xy 5

=1 i=1

where x, . captures the amount of k-th input available in country 7 at time .
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It is also additionally assumed that 22:1 2’111}1 =1 in the VRS case (variable returns to scale),

or 2;1 21 A._ <1 in the NIRS case (non-increasing returns to scale). Under the CRS (constant returns

i=1"71T =
to scale) assumption, no further restriction on 4, ’s is necessary.

The Shephard distance function £, is computed as the reciprocal of the (output-oriented Debreu-
-Farrell) efficiency index Gﬂ (that is, E, = 1/6,).

Since the data contain a finite number of data points, one for each country and each year, by
construction the DEA-based production function is piecewise linear and its vertices are the actually
observed efficient input-output configurations (i.e. not dominated by any linear combination of other
observed input-output configurations).

As a rule, the WTF is estimated sequentially, so that for computing the WTF in each period ¢,
data from periods 7 =1, 2,...,¢ are used. This corresponds to the assumption that technologies, once
developed, remain available for use forever (see e.g. Henderson, Russell 2005).

Advantages and limitations of the deterministic DEA approach

The deterministic DEA is a data-driven approach to deriving the production function from observed
input-output pairs. Its unquestionable strength lies in the fact that it does not require any assumptions
on the functional form of the aggregate production function (provided that it satisfies the free-disposal
property), and provides testable predictions on its shape instead. Indeed, the usual assumption of
a Cobb-Douglas aggregate production function may lead to marked biases within growth accounting or
levels accounting exercises leading to an overestimation of the role of total factor productivity (TFP), as
argued by Caselli (2005) and Jerzmanowski (2007), a feature which is avoided when the DEA approach
is adopted. As for the predicted shape of the production function, DEA can only offer its finite-sample,
piecewise linear approximation. With sufficiently large data samples, however, certain parametric
forms could be tested formally against this approximate DEA-based nonparametric benchmark, such
as the Cobb-Douglas or translog.

There are also limitations of the DEA approach. First, its deterministic character makes it silent
on the estimation precision of the aggregate production function and of the predicted efficiency levels
if inputs and outputs are subject to stochastic shocks. Second, the DEA provides a biased proxy of
the actual technological frontier. In fact, even the most efficient units in the sample could possibly
operate with some extra efficiency, since they are already aggregates of smaller economic units and
must therefore have some internal heterogeneity. Taking account of that, the frontier would be shifted
upwards; efficiency is nevertheless normalized to 100% for the most efficient units in the sample.
The bootstrap method due to Simar and Wilson (1998; 2000b) helps in this respect by allowing for some
corrections in the bias as well as for estimating confidence intervals for the actual efficiency levels and
the technological frontier.

Third, the DEA constructs the aggregate production function on the basis of (relatively few) efficient
data points. This makes it naturally sensitive to outliers and measurement error. This problem cannot be
fully neutralized by bootstrap techniques: while they alleviate sampling bias, they cannot eliminate the
bias due to measurement and aggregation errors. To address this problem, our data have been carefully
filtered, ensuring that the outlying observations and cyclical fluctuations have been removed.
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Simar and Wilson’s bootstraps

As mentioned above, our deterministic DEA results have been complemented with Simar and Wilson’s
(SW) bootstraps. These procedures approximate the sampling distribution of an estimator by repeatedly
simulating the Data Generating Process (DGP) under the assumption that the true production function
is unknown and consequently the true Shephard distance functions £, (for i=1,2,..../ and ¢=1,2,...,T)
are unknown, too. Simar and Wilson’s bootstraps are then used to formulate an approximation of the
sampling distribution of the difference E . — E,, where ]2“” is the DEA estimator of E,,.

The exact procedure applied here is the homogenous bootstrap described by Simar and Wilson
(1998). The procedure is based on the homogeneity assumption (cf. Simar, Wilson 2000a), that random
variables E,,,...,E, are i.i.d. with an unknown density function g on the support (0, 1] (the output-
-oriented case). In particular, it means that we assume £, to be independent of the random variables
generating observed inputs and output (%/,7/), where x! =[x}, ..x, 1, ¥/ =[», .. »,]. Vectors
x!,3), for i=1,2,...,] and 7=1,2,..T, are assumed to be i.i.d., too. Their realizations are the
observed input-output pairs {(x;,y/),i=1,2,..,1, t=1,2,..,T}. We use the procedure boot.sw98
contained in the free software package FEAR (written in R).

As the outcome of the homogenous SW bootstrap we receive, for each unit i=1,2,...,/ and
t=1,2,..,T, the bootstrap estimate of the Shephard distance function E,., and a set of bootstrap
realizations £,,, b = 1,2,.., B, where B = 2000 is the number of bootstrap iterations (see Simar,
Wilson 1998). Usually, B = 2000 is considered sufficient in the literature. Consequently, we also obtain
estimates of the bootstrap bias, variance of £, and respective confidence intervals. Estimates £, may
also be additionally bias-corrected. If the bootstrap procedure is consistent, then asymptotically, these
estimates may be used for £,. Some Monte Carlo experiments conducted by Simar and Wilson (1998;
2000a) suggest that this SW bootstrap is indeed consistent. However, no rigorous proof of its consistency
exists in the literature so far (cf. Simar, Wilson 2000a). The homogeneity assumption may be relaxed.
The inefficiency of a unit would then depend on the observed values of inputs and outputs, i.e. on the
pairs {(x/,y/)(i=1,2,..,l and ¢=1,2,..,T)}. Such procedures are called heterogeneous bootstraps and
were first proposed in the paper by Simar and Wilson (2000b), where the pairs (x;,y;), were expressed
in cylindrical coordinates. In the papers by Kneip, Simar and Wilson (2008; 2009) as well as Park, Jeong
and Simar (2009), generalized procedures were proposed, allowing for orthonormal coordinates, with
one of them being connected with £, and constant returns to scale. These authors have also proposed
formal proofs of consistency of certain bootstrap procedures.

Testing global and local returns to scale

In order to test the extent of returns to scale in the production technology on the basis of DEA-based
estimates of the WTF, we have carried out formal tests of global and local returns to scale, first
introduced by Lothgren and Tambour (1999) and improved by Simar and Wilson (2002).

As far as the test of global returns to scale is concerned, we use a procedure based on two nested
tests proposed by Simar and Wilson (2002). In Test 1, the null hypothesis is tested that the aggregate
production function (WTF) exhibits globally constant returns to scale (CRS) against an alternative
hypothesis that the technology is characterized by variable returns to scale (VRS). That is:
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Test 1:

H, : technology is globally CRS,

H, : technology is VRS.

If H, is rejected, we shall perform Test 2 with H, stating that the technology exhibits globally
non-increasing returns to scale (NIRS) against 4, that the technology is VRS:

Test 2:

H,: technology is globally NIRS,

H, : technology is VRS.

Simar and Wilson (2002) discussed various statistics for testing these hypotheses; among these,
we have selected the following ratios of means:

ZZ O (x7,¥7)

I 1j=1
SCrs = T in Test 1

t I
220,7 (], )

=1 j=1

ZZOCRS CIN

NC— 1 /=1
SENRS = T ’ in Test 2

ZZHNIRS /’yj

=1 j=1

where éﬁRS ), 07 (x *,y")and GN'RS (x7,y}) are estimators of the (output-oriented) Debreu-
-Farrell distance function under the assumption of constant, variable, and non-increasing returns to
scale, respectively.

By construction § >1 because GCRS (x1, %) = 0 (x, 7). The null hypothesis in Test 1 is
rejected when S % is significantly greater than 1. The p-value of the null hypothesis is derived by
bootstrapping (see Simar, Wilson 2002):2
QGCRS,b  QCRS
ST =800) ©)

obs, t

B [ +oo
p-value = > e
b=1 B

(0.+-.) 18 the indicator function, §tCRS’b is the
is the original observed value. The same methodology is used in Test 2.

where B = 2000 is the number of bootstrap replications, /

CRS

b-th bootstrap sample, and Sobs ,

In turn, our statistical test of local returns to scale is based on bootstrap confidence intervals

proposed by Simar and Wilson (2002). This returns-to-scale test (for each unitj=1,2,...,/, and
t=1,2,..,T) is performed using the following nested testing procedure:

2 To test the hypotheses regarding global returns to scale of the technology we use suitably modified codes written by Oleg
Badunenko (see http://sites.google.com/site/obadunenko/codes).
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Test 1:

H,: S5 =1 (scale-efficient or increasing returns to scale),
H,: 8™ >1 (decreasing returns to scale).

If H,in Test 1 is not rejected, we proceed with the second test:
Test 2:

H,: 8¢ =1 (scale-efficient),

H,: S > 1 (increasing returns to scale),

where
CRS ¢t t CRS ¢t .t
Jjt VRS > Jjt NIRS
oy )™ (!, 7))

and 6% (x!,)!),0, (x',y)) and 6, (x!,y!) are the output-oriented Debreu-Farrell distance

functions under the assumption of constant, variable, and non-increasing returns to scale, respectively.

Let then §7°""* (a) and §;™ («) denote the lower bound of the bootstrap (1 - a)-confidence
interval for § ™" and §", respectively. The testing procedure is as follows: (i) if 5;C’N’Rs(a) >1, then H,
in Test 1 is rejected and we conclude that the technology features (locally) decreasing returns to scale;
(i) if §]f "M (a)=1, then H, in Test 1 cannot be rejected and we perform Test 2. If S;CRS (a)>1,then
the hypothesis of scale efficiency is rejected by Test 2 and we conclude that the technology exhibits
(locally) increasing returns to scale; (iii) finally, if SA';CRS(OL) =1, we conclude that the technology is

(locally) scale-efficient.

Stochastic Frontier Analysis

To take a broader picture of the (in)efficiency in aggregate production processes in highly developed
OECD countries, the results obtained with the DEA approach have been compared against estimates
resulting from stochastic frontier analysis (SFA). In this alternative approach, stochastic disturbances
are explicitly taken into account. Potential biases in technical efficiency estimates caused by stochastic
variation, outliers and measurement error are thus minimized. Unfortunately, these advantages are
only conditional on finding the appropriate parametric representation of the aggregate, WTF-based
production function.

In its simplest, log-linear form, the stochastic frontier model for panel data, employed in the current
paper, can be written as:

Yie = x;t ﬂ TV, —u, (6)

where y, =1InY, represents the logarithm of output (log GDP), 8 represents the vector of estimated
parameters, u,, > 0 captures technical inefficiency, and v, is the idiosyncratic, symetrically distributed
error term. Finally, the vector x, carries information about » factors of production expressed in
logarithms, plus a constant term.
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Given this notation, the case x,=(1,InK,,InH, ,InH;) represents our benchmark Cobb-
-Douglas specification with physical capital, unskilled labour and skilled labour as inputs. However,

we shall also extend this vector to accommodate cross-terms as in:

xi = (1, ani,,lnH,v[tj, 1nH,f,1n2K,,, lnzH,«l,], lnzH,f,---

7
InK,InH,InK,InH;,InH_ InH,) @)

in which case equation (6) becomes the translog production function.

Constant returns to scale are either tested or directly imposed, wherever necessary, by writing down
the production function in its intensive form. We shall do this in some of our estimated specifications,
along with introducing certain regularity conditions which serve as a source of prior information and
depend on the specification of the frontier. These regularity conditions enter the analysis via restricting
average input elasticities to be non-negative:

W Lo EL W,

T amk, - Y >0, EL =2
ni

= e—_— = N = —_— Z
K alnH,.U u® 81nH,.S
The sum of these three partial elasticities represents the measure of average returns to scale (scale
elasticity).

Another issue is that applying the Stochastic Frontier methodology to panel data requires one to
keep track of technological progress, which can strongly affect production capabilities. Obviously, it is
“unfair” to evaluate the efficiency of observations from the past against a frontier estimated with a
dataset including more recent data as well, since at earlier times, production processes could not enjoy
the possibilities offered by technologies developed later on. To address this issue, we employ Battese
and Coelli’s (1992; 1995) decomposition of the inefficiency term u,. It takes the following form:

U, =u;"z, 8)

where the fixed effect u, is an exponentially distributed random variable,? whereas z, = exp[-#(t —T)],
where a positive (or negative) # indicates decreasing (or increasing, respectively) inefficiency over time.

Hence, the Battese-Coelli methodology urges the modeller to assume that the random part of u,,is
time-invariant, and its temporal evolution is described by a deterministic function z, with an estimated
parameter #. This rigidity is, however, partly overcome when the WTF is estimated sequentially, so
that for each period ¢, data from periods 7 =1,2,...,z are used. In such case, temporal shifts in u,
appear not only due to changes in z, but also due to the consecutive re-estimations of the WTEF.
The inefficiency term u,, the Debreu-Farrell efficiency measure 6, and the Shephard distance measure
E, are interrelated via the equality 6, = 1/E, = exp(-u,,).

3 Robustness tests have been done upon the alternative assumption of a half-normal distribution, hardly affecting any of
the results.



310 J. Growiec, A. Pajor, D. Gérniak, A. Predki

Estimating the WTF sequentially allows the fixed effect u, to be reassessed in every period.
As a result, we dispose of the uneasy assumption of a unique pattern of convergence to the WTF across
all countries and years (e.g. Kumbhakar, Wang 2005) assume u, to be a function of capital per worker in
the initial period). On the other hand, we do not risk overparametrization of our model, which would
have likely happened, had we assumed the parameters in 3 to be time-dependent (e.g. following linear
trends as in Koop, Osiewalski, Steel 1999; Makieta 2009). Such an approach would be inadequate for
a time horizon comparable to the one employed in our study.

Bayesian estimation framework

Inthe currentstudy, allstructural parameters of the productionfunction (v, |u,,0) ~ N(x, 8 —u,,0°),
contained in the vector f, as well the variance of disturbances v, and ,, the mean of the inefficiency
term u,, denoted by ¢-!, and the pace of technological progress 7, will be estimated in a Bayesian
procedure. The first step of this procedure consists in making assumptions on the considered shapes
of parameter distributions and endowing them with appropriate priors. The vector § is assumed to
take the multivariate normal distribution (possibly truncated, to depict the regularity conditions),
B ~ N(u,Z). The prior distribution of o2 is taken close to the “usual” flat prior, as in Koop, Osiewalski
and Steel (1999). v,’s are treated as independent normal variables with zero mean, unknown variance
and with no autocorrelation over time (for all ¢, v, is independent of v, ). The analysis starts with
an assumption that ,’s are independent exponentially distributed variables with mean ¢! and no
autocorrelation. In this case, ¢ '~ Exp(~Inr"), which implies that prior median efficiency is equal
to r* According to the findings presented in the literature, r* should take the values from the
interval [0.5, 0.9] (see Marzec, Osiewalski 2008; Makieta 2009). Having found that the final results
are insensitive to any value choice out of the aforementioned interval, the prior efficiency median
was set to 0.75.

The complexity of stochastic frontier models makes numerical integration methods inevitable.
In the current study, as in most recent Bayesian literature, this procedure is based upon Gibbs sampling,
which involves taking sequential random draws from the full conditional posterior distribution
(cf. e.g. Koop, Steel, Osiewalski 1995). Under very mild assumptions (see Tierney 1994), these draws
converge to the distribution of draws from the joint posterior. In the current research, implemented
in WinBUGS, the characteristics of joint posterior distribution have been calculated on the basis
of 300 000 burn-in-draws and 300 000 accepted (final) draws for different starting points. To evaluate
the convergence of the Markov Chain Monte Carlo (MCMC) estimation procedure, the following
tests were done: (a) assessment of the history plot (which plots the estimated parameter value against
the iteration number); (b) autocorrelation tests: high autocorrelation might imply slow exploration
of the entire posterior distribution; (c) evaluation of posterior kernel density plots.

Advantages and limitations of the SFA approach

A large amount of work has been devoted in the literature to the development of Bayesian methods
suitable for making inference in stochastic frontier models. Some of the important advantages of
this approach include: (i) the possibility of exact inference on technical efficiency in the presence
of idiosyncratic disturbances, (ii) the possibility of using prior knowledge on the shape of aggregate
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production functions, and (iii) relatively easy incorporation of ideas and restrictions such as regularity
conditions, or the optimal treatment of parameter and model uncertainty.

Although applications of Bayesian approaches to SFA are widespread in the empirical literature,
some competing methods, such as the aforementioned deterministic DEA, or estimating CES production
functions (cf. Duffy, Papageorgiou 2000; Leén-Ledesma, McAdam, Willman 2010), have also been
strongly advocated. Undoubtedly, SFA makes it possible to account for the stochastic disturbances and
measurement error to which the DEA method seems quite sensitive (cf. Koop, Steel 2001). Moreover, unlike
the CES approach, it also allows one to take the WTF perspective. However, when choosing SFA (based
upon either classical or Bayesian econometrics), the researcher has to make far more a priori assumptions:
in particular, the parametrically specified translog production function might exhibit nonmonotonicities.
The utmost objective of comparing DEA to SFA is thus to make these assumptions empirically testable,
and hence to (partially) bridge the gap between the disconnected DEA and SFA literatures.

3. Results

Our estimates of the WTF provide testable implications on the following properties of the aggregate
(country-level) production function:

1. Implied technical efficiency levels. How far is a given country in a given year from the WTF if
the latter takes the given functional form? Is there any congruence of these distance measures across
different functional specifications?

2. Partial elasticities. Are partial elasticities constant (as in the Cobb-Douglas specification)?
If not, are they systematically related to inputs? If so, what is the pattern of dependence? Do we observe
meaningful shifts in partial elasticities across time, from which we could infer that technical change
favors some factors at the expense of others? Do the observed regularities agree or disagree with the
hypothesis of skill-biased technical change?

3. Returns to scale. Viewed globally, can returns to scale be diagnozed as constant or variable?
For each given country and year, are they constant, decreasing or increasing?

4. Elasticities of substitution. Are Morishima and Allen-Uzawa (two-factor) elasticities of substitution
constant across countries and time (as they are in the Cobb-Douglas and CES specifications)? If not,
can we observe indications of greater complementarity or substitutability of certain inputs in certain
countries? Is the elasticity of substitution generally above or below one? Do the observed regularities
agree or disagree with the hypothesis of capital-skill complementarity?

The first broad finding here is that the CRS Cobb-Douglas specification is the one which most
frequently performs badly in our tests. We are however not able to offer an alternative parametric form
of the function that would be in good agreement with nonparametric (bias-corrected) DEA results.
In particular, our SFA-based estimates of translog production functions indicate visible departures
of this particular functional specification from the nonparametric DEA results, too: the discrepancy
pertains to implied efficiency levels, identified partial elasticities, and returns-to-scale properties.
On the other hand, the same translog estimations provide a strong argument why the CRS Cobb-
-Douglas is too simple a specification to match the complex patterns present in the data. In fact, partial
elasticities vary substantially across countries, are heavily correlated with factor endowments, and
a number of Morishima (and Allen-Uzawa) elasticities of substitution are far away from unity.
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The available evidence on constant vs. variable returns to scale is ambiguous. In a test of global
constancy of returns to scale, the null of constant returns to scale can be rejected against the alternative
of variable returns to scale with 99% confidence. In a series of DEA-based tests of local returns to scale
(in a given country and year), however, the null of their constancy is relatively rarely rejected (although
some countries do exhibit decreasing, rather than constant, returns to scale throughout the whole
considered period). Unlike the DEA, the translog specification diagnozes a sharp correlation between
returns to scale and the size of the economy.

3.1. Implied efficiency levels

Table 1 presents a comparison of seven different characterizations of the World Technology Frontier
in the year 2000, computed on the basis of data for 1970-2000. In consecutive columns, we document
Debreu-Farrell efficiency measures 6, (such that potential output of country i at WTF is Y =6Y)
computed according to the following methodologies: (a) bias-corrected DEA, (b) SFA with the Cobb-
-Douglas specification, (c) SFA translog. The variants differ also in the choice of inputs and assumptions
on returns to scale. In the Table, we also report correlations between efficiency indexes computed
on the basis of each specification. It turns out that in the cross-sectional dimension, DEA-based and
SFA-based predictions on technical efficiency are quite strongly positively correlated.* Broadly the same
group of countries is found to be closest to the frontier in all considered cases: Ireland, UK, and USA,
and broadly the same group of countries lags behind: Finland, Greece, Japan, and Switzerland.

We do find some meaningful differences, however. Firstly, in the case of CRS Cobb-Douglas
(and only in that case), all countries are found to be close to the frontier (less than 10% inefficiency)
and there is little variation across countries. Given such comparison, this result suggests potential
difficulties in identifying the inefficiency distribution u, under this functional specification.> Secondly,
the correlation between the CRS translog and unrestricted translog results is very strong, suggesting
that there are only minor departures from CRS in the translog case. Thirdly, correlations are generally
stronger within DEA and SFA estimates than between these two groups, suggesting that functional
specification of the aggregate production function is quantitatively more important than the choice of
its inputs.

Furthermore, treating the bootstrap-augmented DEA (6,,,(K, H", H*)) and the unrestricted
translog SFA (0, (K, H", H®)) as our two “benchmarks”, representing the most general, nesting
specifications in each of the two approaches, we have also computed the RMSE distance measures,
quantifying the differences in predicted Debreu-Farrell technical inefficiency measures obtained
from alternative methodologies. The results are in line with expectations: the distances are largest
between the two general methodologies (DEA/SFA), and within these methodologies, the distances
are the larger, the “simpler” is the measure in question (with the unrestricted Cobb-Douglas being
an exception).

The conclusion from these findings is that the parametric functional forms used in our SFA
analyses, especially the CRS Cobb-Douglas, are likely to be misspecified. They also constitute suggestive

4 We do not compare our DEA and SFA results across the time-series dimension because as opposed to DEA, our SFA
results are based on data of decadal frequency only.

5 Direct evidence against the CRS Cobb-Douglas specification will be provided in section 3.4 where we estimate a non-
-unitary and non-constant elasticity of substitution of the underlying production function.
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evidence that allowing for imperfect substitutability between unskilled and skilled labour helps obtain
significantly different (and thus certainly better, since this step allows for more generality) results,
supporting the related findings by Growiec (2012b; 2013).

On the other hand, the discrepancy between our DEA and SFA results could also indicate
that the former method provides a relatively rough approximation of the WTF due to, e.g. sharp
underrepresentation of certain input-output mixes in our dataset. Hence, the intepretation of these
discrepancies in terms of Cobb-Douglas or translog production function misspecification must be
treated with caution.

In sum, despite several important differences listed above, the ranking of countries in terms of
their technical efficiency is similar under all functional specifications of the WTF. Hence, according to
this test, the translog production function and the nonparametric frontier seem to identify a similar
location of the WTF. Let us now assess its slope and curvature properties.

3.2. Partial elasticities

We shall now check if the partial elasticities of the aggregate production function tend to vary across
countries and time if they are not restricted against such behavior. To this end, we have computed the
partial elasticities of the aggregate production function both with DEA and SFA-translog. In related
studies, Bernanke and Gilirkaynak (2001) and Gollin (2002) have documented substantial differences
in average levels of capital and labour income shares across countries. McAdam and Willman (2013) as
well as Karabarbounis and Neiman (2014) have shown that factor shares also exhibit substantial short-
-run variation and prolonged trends in the time-series dimension. Our current exercise, documenting
the variability of estimated partial elasticities, is complementary to these studies: partial elasticities
and factor shares coincide under constant returns to scale and perfect competition, but not in general.

In the DEA approach, partial elasticities have been computed on the basis of the solution to
each unit’s optimal program. Knowing its maximum attainable output given inputs as well as the
neighbouring efficient units, we have identified each of its partial elasticities on the basis of the
local slope of the (piecewise linear) production function, projected along the axis associated with the
respective factor of production. For fully efficient units, located in vertices of the technology set, so that
their left-sided and right-sided partial elasticities do not coincide, we report only the right-sided partial
elasticities here (i.e. percentage changes in output given a 1% increase in the respective input, holding
everything else constant).6

First four (DEA-based) columns of Tables 2-3 document a negative correlation between the
estimated partial elasticities and the scale of the economy. Hence, they confirm that the nonparametric
WTF has more curvature than the Cobb-Douglas production function for which this correlation is
zero. Another finding is that while the average partial elasticities are generally in line with the ones
present in the established literature, they tend to vary largely across countries and exhibit visible
trends across time. The DEA production function specification implies a consistent falling trend in the
partial elasticity of unskilled labour, a moderately increasing trend in the physical capital elasticity, and
an essentially flat trend in skilled labour elasticity. The finding that some of the reported right-sided

6 Left-sided partial elasticities as well as partial elasticities based on the Simar-Wilson bootstrap are available from the
authors upon request.
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partial elasticities are very low or even zero, is an artifact of the construction of the DEA frontier as
a convex hull of observed input-output pairs, with zero slope imposed on the function to the right of
the highest efficient unit. Also by construction, left-sided partial elasticities must be greater or equal
to the right-sided ones here. Hence, on the basis of right-sided partial elasticities reported here, one
cannot make any inference regarding returns to scale. This will be done separately, using a different
methodology.

Under the SFA translog specification, even though partial elasticities are by definition dependent
on factor endowments, it remains uncertain if this would generate substantial variability of partial
elasticities across countries and time. This would be the case only if second-order terms are quantitatively
important. The latter four columns of Tables 2-3 show that it is indeed the case: translog-based partial
elasticities vary strongly across countries and time. Reassuringly, similar patterns are observed both in
the CRS and the VRS case.

In sum, despite visible differences (the correlations between partial elasticities computed for each
of the 19 countries and 25 years in question according to the DEA- and SFA-translog specifications
range from E,= 0.5234, through EH ¢=0.0954, to EHU =-0.2717), partial elasticities presented above
share a few common properties. First, they vary largely across countries and time. Second, they are
generally negatively correlated with output per worker (apart from the skilled labour elasticity under
the translog specification), indicating that the frontier production function has more curvature than
suggested by the Cobb-Douglas production function. Both these findings provide evidence against
the latter functional specification.

Third, we also find that the unskilled labour elasticity is robustly falling over time, in line with
the concept of skill-biased technical change: the more productive and more technologically advanced
is the economy, the less it relies on unskilled labour for production. Fourth, this fall is counteracted by
respective increases in the skilled labour elasticity (in the translog specification), and also partially by
increases in the physical capital elasticity (in the DEA case). Both these trends are in line with the skill-
-biased technical change hypothesis, too, although the latter is conditional on some degree of capital-
-skill complementarity (cf. Henderson 2009). As we shall see shortly, the analysis of Allen-Uzawa and
Morishima elasticities of substitution provides partial support for such complementarity. Fifth, we find
a marked difference between partial elasticities estimated on the basis of DEA and SFA: in the former
case, partial elasticities are much closer to the benchmark values found in other (not WTF-based)
literature’ than in the latter case. The average capital elasticity is around 0.4 in DEA as compared to
0.6 in SFA translog, and the skilled labour elasticity is around 0.4 in DEA as compared to 0.25 in SFA
translog. This could be suggestive either of some production function misspecification issues inherent
in the parametric WTF estimations, or of a bias induced when partial elasticities are identified with
factor shares.

7 The capital elasticity is usually taken to be close to 1/3, and the labour (or human capital) elasticity — close to 2/3
(e.g. Kydland, Prescott 1982), in line with average factor shares observed in the USA.
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3.3. Returns to scale

Apart from the location and curvature issues discussed above, our WTF estimates also provide
interesting conclusions on local and global returns to scale. Indeed, one advantage of the methods
used in the current analysis is that they do not require the researcher to impose a priori restrictions on
whether returns to scale are decreasing, increasing, or constant. Instead, this property is obtained as
a result and can be statistically tested against the null of constant returns.

First, we have carried out the Simar and Wilson (2002) statistical test of global returns to scale.
For each year 1980-2004, we reject the null of constant returns to scale for the alternative of variable
returns to scale at 1% significance.

In tests of local returns to scale, carried out for each unit in the sample separately, on the other
hand, we have found locally constant returns to scale in 66.5% of all cases. Decreasing returns
have been identified in 29.1% of cases, and in some countries, such as Japan, France, Italy and the
Netherlands, they have been found for all or almost all considered years. We have also observed
a tendency of decreasing returns becoming more widespread in more recent years. On the other hand,
increasing returns are found rarely (in 4.4% of all considered cases), and Finland in 1981-1989 is the
only case when increasing returns were found in more than two consecutive years.

In sum, DEA-based returns-to-scale tests provide mixed evidence on this property. On the one hand,
the aggregate production function is often locally indistinguishable from CRS; on the other hand, it is
also robustly identified as globally VRS. A tentative conclusion would be that even though there exist
both upward and downward departures from CRS (which are not systematically related to the inputs or
output), returns to scale are also close to constant (perhaps marginally decreasing) on average.

Some inference on returns to scale can also be done using our SFA results. As shown in Table 4,
results of estimations of the Cobb-Douglas and the translog production functions without the CRS
restriction lead to a conclusion that returns to scale are generally country-specific, yet globally close to
constant (again, perhaps marginally decreasing). When computed for the entire sample of countries,
the scale elasticity is slightly below unity but not distinguishable from unity in the statistical sense.
Country-specific translog production function estimates indicate, however, that returns to scale
depend on the size of the economy. Unlike in the DEA case, they are decidedly increasing in the US
and decreasing in smaller economies such as Norway and Ireland. Yet, this result might also reflect
the misspecification of the estimated translog production function, so it should be treated with care.
The relationship between the estimated scale elasticities and per capita variables is generally very weak
and inconclusive.

In sum, the parametric and nonparametric approaches both tend to invalidate the assumption
of constancy of global returns to scale, although on average, returns to scale might be in fact
approximately constant. At the level of individual observations, there is however little congruence
between results obtained with either method.

3.4. Morishima and Allen-Uzawa elasticities of substitution

Another important characteristic of the shape of a production function is its elasticity of substitution.
In the two-input world, this quantity is uniquely defined and interpreted as local curvature of the
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isoquant (contour line of the production function), i.e. percentage change in the marginal rate of
substitution between inputs given a 1% change in their relative price. The elasticity of substitution is
an important measure of flexibility of production processes or the ease with which the inputs can be
substituted. However, since our results described above (as well as the respective findings due to e.g.
Caselli, Coleman 2006; Growiec 2012b) provide evidence against homogeneity of human capital, we are
considering three-input production functions here, for which the elasticity of substitution is no longer
a unique concept.

The two most frequently mentioned concepts of elasticity of substitution for z-input functions are
the Allen-Uzawa and the Morishima elasticity (cf. Blackorby, Russell 1989). The first one is defined as
(cf. Hoff 2004):
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for any two inputs X,,X € {K, H", H"}, with |H| being the determinant of the bordered Hessian
matrix:
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and H, being the cofactor of (i, j)-th element in the // matrix.

The Allen-Uzawa elasticity of substitution is symmetric and simplifies to the unique elasticity of
substitution in the two-input case. Unfortunately, as forcefully argued by Blackorby and Russell (1989), it
does not measure the curvature of the underlying production function or the ease of input substitution
appropriately, nor does it provide information about the comparative statics of income shares.

These two important critisms do not apply to the Morishima elasticity of substitution, which it thus
a more theoretically sound concept of elasticity of substitution. The Morishima elasticity of substitution
is defined as:
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and thus 0;.” = off, signifying that the current measure is not symmetric. In the current study,

we compute both measures.

Unfortunately, it is not possible to compute meaningful estimates of the elasticity of substitution
for the DEA-based WTF, because — by construction — the production function is then piecewise linear,
implying that the elasticity of substitution must be locally equal to either zero or infinity. Hence,
we have computed these estimates only for our translog specification. Even these results should be
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interpreted with care, though, because the translog production function, as a log-quadratic function,
might be a bad approximation of the true production function for atypical units, and sometimes even
exhibits non-monotonicities. Country-specific results are presented in Table 5.

Our translog-based estimates of Morishima and Allen-Uzawa elasticities of substitution imply
the following regularities:

1. According to Allen-Uzawa elasticities of substitution, capital and unskilled labour, as well as
capital and skilled labour, are gross substitutes on average. Skilled and unskilled labour are generally
complementary. There is substantial variation in these elasticities of substitution across countries. For
all pairs of factors, substitutability does not exhibit any clear time trend. In some countries, the trend
is increasing, whereas in others it is decreasing.

2. According to Morishima elasticities of substitution, when capital price increases, it can be
relatively easily substituted with unskilled labour, but not with skilled labour. When unskilled labour
wage increases, some of it can be substituted with capital, somewhat more easily than with skilled
labour. When skilled labour wage increases, it can be relatively easily substituted with capital, easier
than with unskilled labour.

3. Neither definition of the elasticity of substitution supports its constancy across countries and
time (required in the CES case). None of the computed values of elasticity is close to unity on average
(as required in the Cobb-Douglas specification).

Thus, our analysis provides partial evidence for the disputed concept of capital-skill complementarity.
Using the translog specification instead of the CES, and basing our discussion on Morishima elasticities
of substitution, we can provide complementary information to what is usually said in the related
literature. In particular, we observe a one-sided relationship here: capital-skill complementarity is
observed on average only when their relative price changes due to changes in capital price, not the
skilled wage.

Unfortunately, our three-factor approach does not allow us to draw implications on whether the
estimated elasticity of substitution between capital and labour is lower or greater than unity, i.e. if
capital and labour are gross complements or substitutes. Studies surveyed by Ledn-Ledesma, McAdam
and Willman (2010), based on time-series data, tend to imply that they are gross complements, whereas
cross-country studies are less conclusive and sometimes suggest the opposite (Duffy, Papageorgiou
2000; Karabarbounis, Neiman 2014). See also Chirinko (2008).

4. Conclusions

Summing up, the objective of the current paper has been to investigate the shape of the aggregate
(country-level) production function based on the estimates of the World Technology Frontier (WTF).
Using annual data on inputs and output in 19 highly developed OECD countries in 1970-2004, we have
estimated the WTF both non-parametrically and parametrically (using the bias-corrected DEA and
SFA approach, respectively) and then used these estimates to assess several properties of the aggregate
production function.

We have obtained the following principal results:

- the CRS Cobb-Douglas production function fails to reproduce the important properties of our
data (inferred inefficiency levels, estimated partial elasticities, elasticities of substitution),
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- the (non-parametric) bootstrap-augmented DEA frontier is also markedly different from the
unrestricted Cobb-Douglas and the translog, even though the latter offers much more flexibility and
can be fitted to the data relatively well,

- regardless of the approach taken, the ranking of countries with respect to their technical
efficiency is relatively stable,

- partial elasticities of the aggregate production function are correlated with inputs both in the
DEA and in the translog case, and they vary substiantially across countries and time, providing strong
evidence against the Cobb-Douglas specification, and also providing partial support for the skill-biased
technical change hypothesis,

- tests of returns to scale based on the DEA, Cobb-Douglas and translog representations of the
frontier provide mixed evidence on this property: returns to scale seem to be globally variable, but
close to constant on average,

- unskilled and skilled labour are not perfectly substitutable,

- elasticities of substitution vary largely across countries and time, and there are some (partial)
indications of capital-skill complementarity.

The results presented here constitute one of the first attempts so far to put together nonparametric
(DEA) and parametric (SFA) estimates of the WTF, with the objective of drawing quantitative
implications for the shape of aggregate production functions. Hence, even if our results are not entirely
conclusive, at least they could be considered a useful benchmark for further investigations.

There is indeed a number of issues related to the current study that might be addressed in
further research. First, one could re-estimate the WTF parametrically, using alternative estimation
methodologies (e.g. maximum likelihood methods, different assumptions regarding the distribution of
technical inefficiency and technical change, etc.), or nonparametrically, using alternative bootstraps.
Such exercises could assess the extent to which our results are sensitive to the choice of estimation
method. Second, one could also allow for other parametric forms of the aggregate production
function apart from the Cobb-Douglas and the translog, in particular the CES production function.
Third, one could look for links between the current study and the literature on misallocation (see e.g.
Hsieh, Klenow 2009) that provides more direct explanations of cross-country differences in technical
efficiency, albeit (again) generally based on the Cobb-Douglas production function specification.
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Appendix

Table 1
Technical efficiency in 2000 — comparison of alternative measurements

SFA- SFA-

DEA SFA-CD SFA-CD
-translog  -translog

DEA (K,L) DEA (K, H)

[CRS] [VRS] (K’[\I-/III{I’S;-[S) (K’;I‘:;;{s) (K’[EE’S]HS) (K, Hu, Hs) (K, Hu, Hs) Vcan
[CRS] [VRS]

Australia 12021 12381 12421 12029  1.0438  1.0979  1.0810 1.1583
Austria 11628 12407 12397 11959  1.0395  1.0869  1.0857 11502
Belgium 1.0734 11972 11750 11506  1.0328  1.0655 10580  1.1075
Canada 12075 12700 12685 11599 10320  1.0772 10590 11535
Denmark 12168 12248 12447 12376 10466 11070 11296 1.1724
Finland 12469 13526 13589 13015  1.0634 11446 11688 1.2338
France 11406 12041 12097 11552  1.0421  1.0884  1.0876 11326
Greece 13207 13532 13419 12452 1.0553 11263 11231 1.2237
Ireland 10133 1.0635  1.0835 11174 10166 10324 10922  1.0598
Italy 11824 12216  1.0809 11355  1.0424  1.0818 10870 1.1188
Japan 14641 14780 13949 12724  1.0728 11686 11991 1.2928
Netherlands 12522 12683 12088 12641  1.0637 11250 11016 1.1834
Norway 10377 10574 11603 12700  1.0563 11038 11409  1.1180
Portugal 12806 12104 11743 1.0205  1.0035 10118 10198 11030
Spain 11920 11944 11203  1.0346 10122 10243  1.0221 1.0857
Sweden 11964 11791 11470  1.2281  1.0476 11052 11073  1.1444
Switzerland 14088 14592 14726 13335  1.0688 11369 11547 1.2907
UK 10140  1.0263  1.0243  1.0396 10109 10235  1.0229 1.0231
USA 10104 11210 10887 10152 10051  1.0181 1035 1.0420

Corr. with DEA 0.8222 0.9110 1.0000 0.7615 0.7421 0.7908 0.7189

glgd: E Dev./ 0.0748 0.0520 0.0000 0.0822 0.1993 0.1518 0.1467
Corr. with

SFATL 0.5566 0.6202 0.7189 0.9014 0.9027 0.9139 1.0000
RMSE Dev. /

SFATL 0.1428 0.1662 0.1467 0.1009 0.0625 0.0217 0.0000

Source: reproduced as Table 5.7 in Growiec (2012a).
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Table 2
Partial elasticities estimated from the DEA (piecewise linear) and the SFA-translog production function.
Cross-country averages

DEA Translog

E, Equ Eys scale Ey Equ Eys scale
Australia 0.35 0.16 0.48 0.99 0.61 0.06 0.28 0.95
Austria 0.39 0.21 0.41 1.01 0.65 0.02 0.22 0.89
Belgium 0.32 0.31 0.37 1.00 0.66 0.09 0.18 0.93
Canada 0.32 0.21 0.65 0.90 0.51 0.02 0.40 0.93
Denmark 0.45 0.20 0.43 1.03 0.66 -0.04 0.21 0.83
Finland 0.46 0.24 0.32 1.02 0.66 0.00 0.18 0.84
France 0.21 0.25 0.51 0.98 0.60 0.21 0.29 1.10
Greece 0.47 0.30 0.24 1.01 0.67 0.09 0.16 0.92
Ireland 0.26 0.25 0.38 0.37 0.72 -0.06 0.12 0.78
Italy 0.57 0.00 0.23 0.53 0.57 0.33 0.23 1.13
Japan 0.00 0.00 0.75 0.75 0.53 0.28 0.37 1.17
Netherlands 0.13 0.35 0.55 0.94 0.56 0.14 0.26 0.96
Norway 0.00 0.20 0.32 0.40 0.50 0.01 0.28 0.80
Portugal 0.54 0.25 0.15 0.94 0.68 0.15 0.09 0.91
Spain 0.34 0.25 0.23 0.65 0.63 0.26 0.18 1.07
Sweden 0.55 0.18 0.43 1.03 0.64 -0.01 0.24 0.87
Switzerland 0.30 0.73 0.57 1.05 0.49 0.00 0.34 0.83
UK 0.65 0.06 0.07 0.70 0.72 0.16 0.23 1.11
USA 0.00 0.00 0.00 0.00 0.45 0.20 0.50 1.15
Mean 0.42 0.27 0.40 0.85 0.60 0.10 0.25 0.96
Corr. with Y/L -0.19 -0.22 -0.15 -0.39 -0.55 -0.06 0.58 0.05

Notes: means have been computed excluding zeros. Translog parameters, computed for the 1980-2000 dataset, have been
assumed constant over time.

Source: reproduced as Tables 5.10 and 5.12 in Growiec (2012a).
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Table 3
Partial elasticities estimated from the DEA (piecewise linear) and the SFA-translog production function.
Annual averages

DEA Translog

E, ELu E,s scale E, ELu E,s scale
1980 0.30 0.43 0.39 0.90 0.63 0.13 0.20 0.96
1981 0.31 0.41 0.40 0.90 0.63 0.13 0.20 0.96
1982 0.30 0.39 0.40 0.88 0.63 0.12 0.20 0.96
1983 0.28 0.42 0.39 0.89 0.63 0.12 0.21 0.96
1984 0.35 0.38 0.41 0.91 0.63 0.12 0.21 0.96
1985 0.33 0.43 0.41 0.93 0.63 0.11 0.21 0.96
1986 0.42 0.33 0.41 0.85 0.63 0.11 0.22 0.96
1987 0.36 0.33 0.42 0.83 0.63 0.11 0.22 0.96
1988 0.35 0.33 0.40 0.82 0.62 0.11 0.23 0.96
1989 0.33 0.32 0.42 0.82 0.62 0.11 0.24 0.96
1990 0.31 0.29 0.43 0.80 0.61 0.11 0.24 0.96
1991 0.31 0.29 0.41 0.83 0.61 0.11 0.24 0.96
1992 0.39 0.30 0.43 0.91 0.61 0.10 0.25 0.96
1993 0.45 0.30 0.41 0.93 0.62 0.10 0.25 0.96
1994 0.47 0.31 0.39 0.94 0.62 0.09 0.25 0.96
1995 0.46 0.32 0.40 0.92 0.61 0.09 0.26 0.96
1996 0.46 0.15 0.43 0.82 0.61 0.09 0.26 0.96
1997 0.50 0.14 0.42 0.80 0.60 0.09 0.27 0.96
1998 0.55 0.12 0.38 0.79 0.59 0.09 0.28 0.95
1999 0.53 0.12 0.40 0.81 0.58 0.08 0.29 0.95
2000 0.50 0.16 0.38 0.81 0.57 0.08 0.30 0.95
2001 0.49 0.17 0.37 0.81 0.56 0.08 0.30 0.95
2002 0.51 0.14 0.38 0.79 0.56 0.08 0.31 0.95
2003 0.51 0.12 0.36 0.77 0.55 0.08 0.32 0.94
2004 0.57 0.11 0.34 0.76 0.54 0.08 0.32 0.94
Mean 0.42 0.27 0.40 0.85 0.60 0.10 0.25 0.96
g/czrr. with 519 -0.22 -0.15 -0.39 -0.55 -0.06 0.58 0.05

Notes: means have been computed excluding zeros. Translog parameters, computed for the 1980-2000 dataset, have been
assumed constant over time.

Source: reproduced as Tables 5.11 and 5.13 in Growiec (2012a).
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Mean scale elasticity 1970 2000

SFA-CD (K, Hu, Hs) 0.960

Australia 0.947 0.939 0.953
Austria 0.889 0.896 0.881
Belgium 0.929 0.924 0.933
Canada 0.939 0.962 0.897
Denmark 0.835 0.840 0.827
Finland 0.840 0.827 0.842
France 1.104 1.111 1.087
Greece 0.911 0.890 0.929
Ireland 0.780 0.771 0.782
Italy 1.119 1.096 1.139
Japan 1.177 1.180 1.160
Netherlands 0.956 0.939 0.957
Norway 0.804 0.821 0.763
Portugal 0.898 0.868 0.926
Spain 1.057 1.023 1.089
Sweden 0.879 0.893 0.854
Switzerland 0.830 0.834 0.822
UK 1.114 1.125 1.091
USA 1.164 1.199 1.124
Translog (K, Hu, Hs) mean 0.956 0.955 0.950
Corr. with K/L 0.041 -0.065 -0.028
Corr. with HY/L -0.017 -0.227 0.136
Corr. with HS/L 0.212 0.214 0.078
Corr. with Y/L 0.028 0.203 -0.059
Corr. with L 0.709 0.759 0.638
Corr. with Y 0.654 0.708 0.582

Note: scale elasticities above (below) 1 indicate IRS (respectively, DRS).

Source: reproduced as Table 5.16 in Growiec (2012a).
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Table 5
Morishima and Allen-Uzawa elasticities of substitution, inferred from the translog production function.
Cross-country averages

Morishima EoS Allen-Uzawa EoS
E(K, HY) E(K, HS) E(HY,K) E(HY, HS) E(HS,K) E(HS,HY) E(K, HV) E(K, HS) E(HY,K)
Australia -16.37 719 0.93 -0.93 0.29 0.61 1.46 0.46 -4.92
Austria 2.37 -8.57 0.73 -0.39 0.41 0.06 1.02 0.57 -3.45
Belgium -8.06 -6.61 0.69 -0.11 0.33 0.07 0.99 0.47 -8.21
Canada 246  -12.51 0.89 -0.89 0.30 0.32 1.65 0.57 2.69
Denmark 6.13 -8.21 0.74 -0.31 0.45 -0.14 0.94 0.58 2.22
Finland 0.13 -8.12 0.67 -0.15 0.41 -0.03 0.87 0.54 -3.31
France 16.80 -32.20 -0.26 1.29 1.02 2.10 -0.51 1.92 8.88
Greece 5.30 7.61 0.58 1.05 0.38  -0.52 0.81 0.53 -12.18
Ireland 3.62 -4.33 0.57 -0.03 0.27 -0.01 0.65 0.31 2.89
Italy 971  -30.44 0.22 -0.45 0.60 0.33 0.45 1.20 341
Japan 12.73  -36.51 -0.07 0.85 0.76 -2.05 -0.17 1.73 413
Netherlands -63.48 23.46 2.09 2.51 -0.70 1.93 3.56 -1.18 24.26
Norway 232 -20.30 0.75 -0.29 0.34 -0.03 1.20 0.56 2.69
Portugal 0.46  -16.35 -0.11 3.87 1.17 2.27 -0.14 1.57 22.14
Spain -7.57  -16.32 0.33 -0.83 0.51 0.60 0.56 0.89 5.84
Sweden 3.58 -9.17 0.76 -0.41 0.44 -0.10 1.05 0.61 2.84
Switzerland 216 -19.60 0.79 -0.57 0.36 -0.02 1.35 0.62 -1.95
UK -190.52 66.19 5.84 -12.44 -3.00 20.51 9.90 -5.31 -50.22
USA 431.60 -65.92 -1.33 415 1.22  -21.34 -3.62 3.26 10.12
Mean 940 -11.59 0.78 -0.48 0.29 -0.22 1.16 0.52 -5.87

Note: translog parameters, computed for the 1980-2000 dataset, have been assumed constant over time.

Source: reproduced as Table 5.17 in Growiec (2012a).



